-
Previous Article
Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system
- DCDS Home
- This Issue
-
Next Article
On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators
Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach
1. | Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, United Kingdom, United Kingdom, United Kingdom |
References:
[1] |
J. Banasiak and L. Arlotti, "Positive Perturbations of Semigroups with Applications," Springer, London, 2006. |
[2] |
J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates, Nonlinear Analysis : Real World Applications, 13 (2012), 91-105.
doi: 10.1016/j.nonrwa.2011.07.016. |
[3] |
J. Blum, Dust agglomeration, Advances in Physics, 55 (2006), 881-947. |
[4] |
J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations I. The strong fragmentation case, Proc. Roy. Soc. Edinburgh, Sect. A, 121 (1992), 231-244.
doi: 10.1017/S0308210500027888. |
[5] |
F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation, J. Math. Anal. Appl., 192 (1995), 892-914.
doi: 10.1006/jmaa.1995.1210. |
[6] |
J. M. Fernández-Díaz and G. J. Gómez-García, Exact solution of a coagulation equation with a product kernel in the multicomponent case, Physica D, 239 (2010), 279-290.
doi: 10.1016/j.physd.2009.11.010. |
[7] |
F. Gruy, Population balance for aggregation coupled with morphology changes, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 374 (2011), 69-76.
doi: 10.1016/j.colsurfa.2010.11.010. |
[8] |
M. Kostoglou, A. G. Konstandopoulos and S. K. Friedlander, Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring, Aerosol Science, 37 (2006), 1102-1115.
doi: 10.1016/j.jaerosci.2005.11.009. |
[9] |
A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation, Physica D, 239 (2010), 1436-1445.
doi: 10.1016/j.physd.2009.03.013. |
[10] |
A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss, J. Evol. Equ., 12 (2012), 181-201.
doi: 10.1007/s00028-011-0129-8. |
[11] |
A. L. Smith, "Mathematical Analysis of Discrete Coagulation-Fragmentation Equations," Ph.D. Thesis, University of Strathclyde, Glasgow, 2011. |
[12] |
R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation, Chemical Eng. Sci., 53 (1998), 1725-1729.
doi: 10.1016/S0009-2509(98)00016-5. |
[13] |
J. A. D. Wattis, Exact solutions for cluster-growth kinetics with evolving size and shape profiles, J. Phys. A : Math. Gen., 39 (2006), 7283-7298.
doi: 10.1088/0305-4470/39/23/007. |
show all references
References:
[1] |
J. Banasiak and L. Arlotti, "Positive Perturbations of Semigroups with Applications," Springer, London, 2006. |
[2] |
J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates, Nonlinear Analysis : Real World Applications, 13 (2012), 91-105.
doi: 10.1016/j.nonrwa.2011.07.016. |
[3] |
J. Blum, Dust agglomeration, Advances in Physics, 55 (2006), 881-947. |
[4] |
J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations I. The strong fragmentation case, Proc. Roy. Soc. Edinburgh, Sect. A, 121 (1992), 231-244.
doi: 10.1017/S0308210500027888. |
[5] |
F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation, J. Math. Anal. Appl., 192 (1995), 892-914.
doi: 10.1006/jmaa.1995.1210. |
[6] |
J. M. Fernández-Díaz and G. J. Gómez-García, Exact solution of a coagulation equation with a product kernel in the multicomponent case, Physica D, 239 (2010), 279-290.
doi: 10.1016/j.physd.2009.11.010. |
[7] |
F. Gruy, Population balance for aggregation coupled with morphology changes, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 374 (2011), 69-76.
doi: 10.1016/j.colsurfa.2010.11.010. |
[8] |
M. Kostoglou, A. G. Konstandopoulos and S. K. Friedlander, Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring, Aerosol Science, 37 (2006), 1102-1115.
doi: 10.1016/j.jaerosci.2005.11.009. |
[9] |
A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation, Physica D, 239 (2010), 1436-1445.
doi: 10.1016/j.physd.2009.03.013. |
[10] |
A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss, J. Evol. Equ., 12 (2012), 181-201.
doi: 10.1007/s00028-011-0129-8. |
[11] |
A. L. Smith, "Mathematical Analysis of Discrete Coagulation-Fragmentation Equations," Ph.D. Thesis, University of Strathclyde, Glasgow, 2011. |
[12] |
R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation, Chemical Eng. Sci., 53 (1998), 1725-1729.
doi: 10.1016/S0009-2509(98)00016-5. |
[13] |
J. A. D. Wattis, Exact solutions for cluster-growth kinetics with evolving size and shape profiles, J. Phys. A : Math. Gen., 39 (2006), 7283-7298.
doi: 10.1088/0305-4470/39/23/007. |
[1] |
Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic and Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028 |
[2] |
Jacek Banasiak. Transport processes with coagulation and strong fragmentation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 445-472. doi: 10.3934/dcdsb.2012.17.445 |
[3] |
Maxime Breden. Applications of improved duality lemmas to the discrete coagulation-fragmentation equations with diffusion. Kinetic and Related Models, 2018, 11 (2) : 279-301. doi: 10.3934/krm.2018014 |
[4] |
Pierre Degond, Maximilian Engel. Numerical approximation of a coagulation-fragmentation model for animal group size statistics. Networks and Heterogeneous Media, 2017, 12 (2) : 217-243. doi: 10.3934/nhm.2017009 |
[5] |
Jacek Banasiak, Luke O. Joel, Sergey Shindin. The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation. Kinetic and Related Models, 2019, 12 (5) : 1069-1092. doi: 10.3934/krm.2019040 |
[6] |
Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulation-fragmentation systems. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 541-552. doi: 10.3934/dcds.2007.17.541 |
[7] |
Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563 |
[8] |
Prasanta Kumar Barik, Ankik Kumar Giri. A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation. Kinetic and Related Models, 2018, 11 (5) : 1125-1138. doi: 10.3934/krm.2018043 |
[9] |
Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529 |
[10] |
Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic and Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589 |
[11] |
Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126 |
[12] |
Jacek Banasiak. Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3319-3334. doi: 10.3934/dcdss.2020161 |
[13] |
Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic and Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223 |
[14] |
Mustapha Mokhtar-Kharroubi. On spectral gaps of growth-fragmentation semigroups with mass loss or death. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1293-1327. doi: 10.3934/cpaa.2022019 |
[15] |
Mustapha Mokhtar-Kharroubi, Jacek Banasiak. On spectral gaps of growth-fragmentation semigroups in higher moment spaces. Kinetic and Related Models, 2022, 15 (2) : 147-185. doi: 10.3934/krm.2021050 |
[16] |
Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations and Control Theory, 2020, 9 (2) : 431-446. doi: 10.3934/eect.2020012 |
[17] |
Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069 |
[18] |
V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481 |
[19] |
Mohammed AL Horani, Mauro Fabrizio, Angelo Favini, Hiroki Tanabe. Fractional Cauchy problems and applications. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2259-2270. doi: 10.3934/dcdss.2020187 |
[20] |
Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]