Citation: |
[1] |
J. Banasiak and L. Arlotti, "Positive Perturbations of Semigroups with Applications," Springer, London, 2006. |
[2] |
J. Banasiak, Global classical solutions of coagulation-fragmentation equations with unbounded coagulation rates, Nonlinear Analysis : Real World Applications, 13 (2012), 91-105.doi: 10.1016/j.nonrwa.2011.07.016. |
[3] |
J. Blum, Dust agglomeration, Advances in Physics, 55 (2006), 881-947. |
[4] |
J. Carr, Asymptotic behaviour of solutions to the coagulation-fragmentation equations I. The strong fragmentation case, Proc. Roy. Soc. Edinburgh, Sect. A, 121 (1992), 231-244.doi: 10.1017/S0308210500027888. |
[5] |
F. P. da Costa, Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation, J. Math. Anal. Appl., 192 (1995), 892-914.doi: 10.1006/jmaa.1995.1210. |
[6] |
J. M. Fernández-Díaz and G. J. Gómez-García, Exact solution of a coagulation equation with a product kernel in the multicomponent case, Physica D, 239 (2010), 279-290.doi: 10.1016/j.physd.2009.11.010. |
[7] |
F. Gruy, Population balance for aggregation coupled with morphology changes, Colloids and Surfaces A : Physicochemical and Engineering Aspects, 374 (2011), 69-76.doi: 10.1016/j.colsurfa.2010.11.010. |
[8] |
M. Kostoglou, A. G. Konstandopoulos and S. K. Friedlander, Bivariate population dynamics simulation of fractal aerosol aggregate coagulation and restructuring, Aerosol Science, 37 (2006), 1102-1115.doi: 10.1016/j.jaerosci.2005.11.009. |
[9] |
A. C. McBride, A. L. Smith and W. Lamb, Strongly differentiable solutions of the discrete coagulation-fragmentation equation, Physica D, 239 (2010), 1436-1445.doi: 10.1016/j.physd.2009.03.013. |
[10] |
A. L. Smith, W. Lamb, M. Langer and A. C. McBride, Discrete fragmentation with mass loss, J. Evol. Equ., 12 (2012), 181-201.doi: 10.1007/s00028-011-0129-8. |
[11] |
A. L. Smith, "Mathematical Analysis of Discrete Coagulation-Fragmentation Equations," Ph.D. Thesis, University of Strathclyde, Glasgow, 2011. |
[12] |
R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation, Chemical Eng. Sci., 53 (1998), 1725-1729.doi: 10.1016/S0009-2509(98)00016-5. |
[13] |
J. A. D. Wattis, Exact solutions for cluster-growth kinetics with evolving size and shape profiles, J. Phys. A : Math. Gen., 39 (2006), 7283-7298.doi: 10.1088/0305-4470/39/23/007. |