Citation: |
[1] |
A. Bukhgeim, J. Cheng, V. Isakov and M. Yamamoto, Uniqueness in determining damping coefficients in hyperbolic equations, Analytic Extension Formulas and their Applications, Kluwer, Dordrecht (2001), 27-46. |
[2] |
A. Bukhgeim and M. Klibanov, Global uniqueness of a class of multidimensional inverse problem, Sov., Math.-Dokl., 24 (1981), 244-247. |
[3] |
T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux derivées partielles à deux variables independantes, Ark. Mat. Astr. Fys., 2B (1939), 1-9. |
[4] |
L.F.Ho, Observabilite frontiere de l'equation des ondes, Comptes Rendus de l'Academie des Sciences de Paris, 302 (1986), 443-446. |
[5] |
O. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems, 17 (2001), 717-728.doi: 10.1088/0266-5611/17/4/310. |
[6] |
O. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations, Comm. Partial Differential Equations, 26 (2001), 1409-1425.doi: 10.1081/PDE-100106139. |
[7] |
V. Isakov, "Inverse Problems for Partial Differential Equations," First Edition, Springer, New York, 1998. |
[8] |
V. Isakov, "Inverse Problems for Partial Differential Equations," Second Edition, Springer, New York, 2006. |
[9] |
V. Isakov, "Inverse Source Problems," American Mathematical Society, 2000. |
[10] |
V. Isakov and M. Yamamoto, Carleman estimate with the Neumann boundary condition and its application to the observability inequality and inverse hyperbolic problems, Contemp. Math., 268 (2000), 191-225.doi: 10.1090/conm/268/04314. |
[11] |
V. Isakov and M. Yamamoto, Stability in a wave source problem by Dirichlet data on subboundary, J. of Inverse & Ill-Posed Problems, 11 (2003), 399-409.doi: 10.1515/156939403770862802. |
[12] |
M. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.doi: 10.1088/0266-5611/8/4/009. |
[13] |
M. Klibanov and A. Timonov, "Carleman Estimates For Coefficient Inverse Problems and Numerical Applications," VSP, Utrecht, 2004.doi: 10.1515/9783110915549. |
[14] |
I. Lasiecka, J. L. Lions and R. Triggiani, Non homogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192. |
[15] |
I. Lasiecka and R. Triggiani, A cosine operator approach to modeling $L_2(0,T;L_2(\Omega))$ boundary input hyperbolic equations, Appl. Math. & Optimiz., 7 (1981), 35-83.doi: 10.1007/BF01442108. |
[16] |
I. Lasiecka and R. Triggiani, Regularity of hyperbolic equations under $L_2(0,T;L_2(\Gamma))$-Dirichlet boundary terms, Appl. Math. & Optimiz., 10 (1983), 275-286.doi: 10.1007/BF01448390. |
[17] |
I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with Neumann boundary control, Appl. Math. & Optimiz., 19 (1989), 243-290.doi: 10.1007/BF01448201. |
[18] |
I. Lasiecka and R. Triggiani, Recent advances in regularity of second-order hyperbolic mixed problems and applications, Dynamics Reported, Springer-Verlag, 3 (1994), 104-158.doi: 10.1007/978-3-642-78234-3_3. |
[19] |
I. Lasiecka and R. Triggiani, Carleman estimates and exact controllability for a system of coupled, nonconservative second-order hyperbolic equations, Marcel Dekker Lectures Notes Pure Appl. Math., 188 (1997), 215-245. |
[20] |
I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories," 2, Encyclopedia of Mathematics and its Applications Series, Cambridge University Press, 2000. |
[21] |
I. Lasiecka, R. Triggiani and P. F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl., 235 (1999), 13-57.doi: 10.1006/jmaa.1999.6348. |
[22] |
I. Lasiecka, R. Triggiani and P. F. Yao, An observability estimate in $L_2(\Omega)\times H^{-1}(\Omega)$ for second order hyperbolic equations with variable coefficients, Control of Distributed Parameter and Stochastic Systems, Kluwer (1999), 71-79, (eds. S. Chen, X. Li, J. Yong and X. Zhou). |
[23] |
I. Lasiecka, R. Triggiani and X. Zhang, Nonconservative wave equations with unobserved Neumann B.C.: Global uniqueness and observability in one shot, Contemp. Math., 268 (2000), 227-325.doi: 10.1090/conm/268/04315. |
[24] |
M. M. Lavrentev, V. G. Romanov and S. P. Shishataskii, "Ill-Posed Problems of Mathematical Physics and Analysis," Amer. Math. Soc., Providence, RI, 64 (1986). |
[25] |
J. L. Lions, "Controlabilite Exacte," Perturbations et Stabilisation de Systemes Distribues, 1, Masson, Paris, 1988. |
[26] |
J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications," I, Springer-Verlag, Berlin, 1972. |
[27] |
W. Littman, "Near Optimal Time Boundary Controllability for a Class of Hyperbolic Equations," Lecture Notes in Control and Inform. Sci. 97, Springer-Verlag, Berlin, 1987, 307-312,doi: 10.1007/BFb0038763. |
[28] |
S. Liu, Inverse problem for a structural acoustic interaction, Nonlinear Anal., 74 (2011), 2647-2662.doi: 10.1016/j.na.2010.12.020. |
[29] |
S. Liu and R. Triggiani, Global uniqueness and stability in determining the damping and potential coefficients of an inverse hyperbolic problem, Nonlinear Anal. Real World Appl., 12 (2011), 1562-1590.doi: 10.1016/j.nonrwa.2010.10.014. |
[30] |
S. Liu and R. Triggiani, Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with non-homogeneous Neumann B.C. through an additional Dirichlet boundary trace, SIAM J. Math. Anal., 43 (2011), 1631-1666.doi: 10.1137/100808988. |
[31] |
S. Liu and R. Triggiani, Global uniqueness in determining electric potentials for a system of strongly coupled Schrödinger equations with magnetic potential terms, J. Inverse Ill-Posed Probl., 19 (2011), 223-254.doi: 10.1515/JIIP.2011.030. |
[32] |
S. Liu and R. Triggiani, Recovering the damping coefficients for a system of coupled wave equations with Neumann BC: Uniqueness and stability, Chin. Ann. Math. Ser B, 32 (2011), 669-698.doi: 10.1007/s11401-011-0672-1. |
[33] |
S. Liu and R. Triggiani, Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness, Dynamical Systems and Differential Equations, DCDS Supplement (2011), Proceedings of the 8th AIMS International Conference (Dresden, Germany), 1001-1014. |
[34] |
S. Liu and R. Triggiani, Global uniqueness and stability in determining the damping coefficient of an inverse hyperbolic problem with non-homogeneous Dirichlet B.C. through an additional localized Neumann boundary trace, Applicable Analysis, 91 (2012), Special Issue on Direct and Inverse Problems, 1551-1581.doi: 10.1080/00036811.2011.618125. |
[35] |
S. Liu and R. Triggiani, "Boundary Control and Boundary Inverse Theory for Non-Homogeneous Second-Order Hyperbolic Equations: A Common Carleman Estimates Approach," Special Volume in Book Series of American Institute of Mathematical Sciences, under Sissa's auspices, 110 pp., to appear. |
[36] |
V. G. Mazya and T. O. Shaposhnikova, "Theory of Multipliers in Spaces of Differentiable Functions," Monographs and Studies in Mathematics, 23, Pitman, 1985.doi: 10.1070/RM1983v038n03ABEH003484. |
[37] |
D. Tataru, A-priori estimates of Carleman's type in domains with boundary, J. Math. Pures. et Appl., 73 (1994), 355-387. |
[38] |
D. Tataru, Boundary controllability for conservative PDE's, Appl. Math. & Optimiz., 31 (1995), 257-295. Based on a Ph.D. dissertation, University of Virginia, (1992).doi: 10.1007/BF01215993. |
[39] |
D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl., 75 (1996), 367-408. |
[40] |
R. Triggiani, Exact boundary controllability of $L_2(\Omega) \times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems, Appl. Math. & Optimiz., 18 (1988), 241-277.doi: 10.1007/BF01443625. |
[41] |
R. Triggiani and P. F. Yao, Carleman estimates with no lower order terms for general Riemannian wave equations: Global uniqueness and observability in one shot, Appl. Math. & Optimiz., 46 (2002), 331-375.doi: 10.1007/s00245-002-0751-5. |
[42] |
M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98.doi: 10.1016/S0021-7824(99)80010-5. |