November  2013, 33(11&12): 5273-5292. doi: 10.3934/dcds.2013.33.5273

A thermo piezoelectric model: Exponential decay of the total energy

1. 

National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, 25651-070, Brazil

2. 

National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, CEP 25651-070, Brazil

Received  October 2011 Revised  April 2012 Published  May 2013

We consider a linear evolution model describing a piezoelectric phenomenon under thermal effects as suggested by R. Mindlin [13] and W. Nowacki [16]. We prove the equivalence between exponential decay of the total energy and an observability inequality for an anisotropic elastic wave system. Our strategy is to use a decoupling method to reduce the problem to an equivalent observability inequality for an anisotropic elastic wave system and assume a condition which guarantees that the corresponding elliptic operator has no eigenfunctions with null divergence.
Citation: Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273
References:
[1]

K. Ammari and S. Nicaise, Stabilization of a piezoelectric system, Asymptotic Analysis, 73 (2011), 125-146.  Google Scholar

[2]

I. Babuska, Error bounds for finite element method, Numerishe Mathematik, 16 (1971), 322-333.  Google Scholar

[3]

P. G. Ciarlet, "Mathematical Elasticity, Vols I and II," North-Holland, Amsterdam, I, 1988, II, 1997.  Google Scholar

[4]

C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271. doi: 10.1007/BF00276727.  Google Scholar

[5]

H. Funakubo, "Ed. Shape Memory Alloys," Translated from the Japanese by J. B. Kennedy, Gordon and Breach Science Publishers, New York, 1984. Google Scholar

[6]

D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. TMA, 21 (1993), 65-75. doi: 10.1016/0362-546X(93)90178-U.  Google Scholar

[7]

D. Iessan, On some theorems in Thermopiezoelectricity, J. Thermal Stresses, 12 (1989), 209-223. doi: 10.1080/01495738908961962.  Google Scholar

[8]

B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation, ESAIM, Control Optimization and Calculus of Variations, 12 (2006), 198-215. doi: 10.1051/cocv:2005028.  Google Scholar

[9]

B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media, SIAM, J. Control and Optim., 46 (2007), 1080-1097. doi: 10.1137/050629884.  Google Scholar

[10]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Rational Mech. Anal., 148 (1999), 179-231. doi: 10.1007/s002050050160.  Google Scholar

[11]

J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systèmes Distribués," Tome 1, Contrôlabilité Exacte, Masson 1988.  Google Scholar

[12]

B. Miara and M. Lima, Energy decay in piezoelectric systems, Applicable Analysis, 88 (2009), 947-960. doi: 10.1080/00036810903042166.  Google Scholar

[13]

R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates, International Journal of Solid Structures, 10 (1974), 625-637. doi: 10.1016/0020-7683(74)90047-X.  Google Scholar

[14]

I. Müller, Six lectures in shape memory, Centre Recherches Mathématiques, CRM, Proceedings and Lectures Notes, 13 (1998).  Google Scholar

[15]

S. Nicaise, Stability and controllability of the electromagneto-elastic system, Post. Math., 60 (2003), 73-80.  Google Scholar

[16]

W. Nowacki, Some general theorems of thermopiezoelectricity, J. Thermal Stresses, 1 (1978), 171-182. doi: 10.1080/01495737808926940.  Google Scholar

[17]

J. M. Sejje Suárez, Modelagem de fenômenos termopiezoelétricos: Analise assintótica e Simulação Numérica, Tese de Doutorado (2011) Laboratório Nacional de Computação Cientifica (LNCC-MCT), Brasil. (in Portuguese) Google Scholar

[18]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica Pura ed. Applicata, (IV), CXLVI (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[19]

R. C. Smith, "Smart Material Systems. Model Development," SIAM, Frontiers in Applied Mathematics, 2005. doi: 10.1137/1.9780898717471.  Google Scholar

[20]

A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design," Cambridge University Press, Cambridge, UK, 2001. Google Scholar

[21]

K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors," Kluwer Academic Publishers, Boston, 1997. doi: 10.1007/978-1-4613-1463-9.  Google Scholar

[22]

E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl., 74 (1995), 291-315.  Google Scholar

show all references

References:
[1]

K. Ammari and S. Nicaise, Stabilization of a piezoelectric system, Asymptotic Analysis, 73 (2011), 125-146.  Google Scholar

[2]

I. Babuska, Error bounds for finite element method, Numerishe Mathematik, 16 (1971), 322-333.  Google Scholar

[3]

P. G. Ciarlet, "Mathematical Elasticity, Vols I and II," North-Holland, Amsterdam, I, 1988, II, 1997.  Google Scholar

[4]

C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271. doi: 10.1007/BF00276727.  Google Scholar

[5]

H. Funakubo, "Ed. Shape Memory Alloys," Translated from the Japanese by J. B. Kennedy, Gordon and Breach Science Publishers, New York, 1984. Google Scholar

[6]

D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. TMA, 21 (1993), 65-75. doi: 10.1016/0362-546X(93)90178-U.  Google Scholar

[7]

D. Iessan, On some theorems in Thermopiezoelectricity, J. Thermal Stresses, 12 (1989), 209-223. doi: 10.1080/01495738908961962.  Google Scholar

[8]

B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation, ESAIM, Control Optimization and Calculus of Variations, 12 (2006), 198-215. doi: 10.1051/cocv:2005028.  Google Scholar

[9]

B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media, SIAM, J. Control and Optim., 46 (2007), 1080-1097. doi: 10.1137/050629884.  Google Scholar

[10]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Rational Mech. Anal., 148 (1999), 179-231. doi: 10.1007/s002050050160.  Google Scholar

[11]

J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systèmes Distribués," Tome 1, Contrôlabilité Exacte, Masson 1988.  Google Scholar

[12]

B. Miara and M. Lima, Energy decay in piezoelectric systems, Applicable Analysis, 88 (2009), 947-960. doi: 10.1080/00036810903042166.  Google Scholar

[13]

R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates, International Journal of Solid Structures, 10 (1974), 625-637. doi: 10.1016/0020-7683(74)90047-X.  Google Scholar

[14]

I. Müller, Six lectures in shape memory, Centre Recherches Mathématiques, CRM, Proceedings and Lectures Notes, 13 (1998).  Google Scholar

[15]

S. Nicaise, Stability and controllability of the electromagneto-elastic system, Post. Math., 60 (2003), 73-80.  Google Scholar

[16]

W. Nowacki, Some general theorems of thermopiezoelectricity, J. Thermal Stresses, 1 (1978), 171-182. doi: 10.1080/01495737808926940.  Google Scholar

[17]

J. M. Sejje Suárez, Modelagem de fenômenos termopiezoelétricos: Analise assintótica e Simulação Numérica, Tese de Doutorado (2011) Laboratório Nacional de Computação Cientifica (LNCC-MCT), Brasil. (in Portuguese) Google Scholar

[18]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica Pura ed. Applicata, (IV), CXLVI (1987), 65-96. doi: 10.1007/BF01762360.  Google Scholar

[19]

R. C. Smith, "Smart Material Systems. Model Development," SIAM, Frontiers in Applied Mathematics, 2005. doi: 10.1137/1.9780898717471.  Google Scholar

[20]

A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design," Cambridge University Press, Cambridge, UK, 2001. Google Scholar

[21]

K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors," Kluwer Academic Publishers, Boston, 1997. doi: 10.1007/978-1-4613-1463-9.  Google Scholar

[22]

E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl., 74 (1995), 291-315.  Google Scholar

[1]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Eraldo R. N. Fonseca. Attractors and pullback dynamics for non-autonomous piezoelectric system with magnetic and thermal effects. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021129

[2]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[3]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

[4]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[5]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - Series B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[6]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - Series B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[7]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[8]

Haolei Wang, Lei Zhang. Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions. Electronic Research Archive, 2020, 28 (1) : 405-421. doi: 10.3934/era.2020023

[9]

Tomasz Komorowski, Stefano Olla, Marielle Simon. Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities. Kinetic & Related Models, 2018, 11 (3) : 615-645. doi: 10.3934/krm.2018026

[10]

Willy Sarlet, Tom Mestdag. Compatibility aspects of the method of phase synchronization for decoupling linear second-order differential equations. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021019

[11]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[12]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[13]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[14]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the one-dimensional version of the dynamical Marguerre-Vlasov system with thermal effects. Conference Publications, 2009, 2009 (Special) : 536-547. doi: 10.3934/proc.2009.2009.536

[15]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete and Continuous Dynamical Systems - Series B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[16]

Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations & Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016

[17]

Asim Aziz, Wasim Jamshed, Yasir Ali, Moniba Shams. Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, Joule heating and thermal radiation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2667-2690. doi: 10.3934/dcdss.2020142

[18]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[19]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[20]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete and Continuous Dynamical Systems - Series B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

[Back to Top]