\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A thermo piezoelectric model: Exponential decay of the total energy

Abstract Related Papers Cited by
  • We consider a linear evolution model describing a piezoelectric phenomenon under thermal effects as suggested by R. Mindlin [13] and W. Nowacki [16]. We prove the equivalence between exponential decay of the total energy and an observability inequality for an anisotropic elastic wave system. Our strategy is to use a decoupling method to reduce the problem to an equivalent observability inequality for an anisotropic elastic wave system and assume a condition which guarantees that the corresponding elliptic operator has no eigenfunctions with null divergence.
    Mathematics Subject Classification: 35B40, 74H40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Ammari and S. Nicaise, Stabilization of a piezoelectric system, Asymptotic Analysis, 73 (2011), 125-146.

    [2]

    I. Babuska, Error bounds for finite element method, Numerishe Mathematik, 16 (1971), 322-333.

    [3]

    P. G. Ciarlet, "Mathematical Elasticity, Vols I and II," North-Holland, Amsterdam, I, 1988, II, 1997.

    [4]

    C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271.doi: 10.1007/BF00276727.

    [5]

    H. Funakubo, "Ed. Shape Memory Alloys," Translated from the Japanese by J. B. Kennedy, Gordon and Breach Science Publishers, New York, 1984.

    [6]

    D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. TMA, 21 (1993), 65-75.doi: 10.1016/0362-546X(93)90178-U.

    [7]

    D. Iessan, On some theorems in Thermopiezoelectricity, J. Thermal Stresses, 12 (1989), 209-223.doi: 10.1080/01495738908961962.

    [8]

    B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation, ESAIM, Control Optimization and Calculus of Variations, 12 (2006), 198-215.doi: 10.1051/cocv:2005028.

    [9]

    B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media, SIAM, J. Control and Optim., 46 (2007), 1080-1097.doi: 10.1137/050629884.

    [10]

    G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Rational Mech. Anal., 148 (1999), 179-231.doi: 10.1007/s002050050160.

    [11]

    J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systèmes Distribués," Tome 1, Contrôlabilité Exacte, Masson 1988.

    [12]

    B. Miara and M. Lima, Energy decay in piezoelectric systems, Applicable Analysis, 88 (2009), 947-960.doi: 10.1080/00036810903042166.

    [13]

    R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates, International Journal of Solid Structures, 10 (1974), 625-637.doi: 10.1016/0020-7683(74)90047-X.

    [14]

    I. Müller, Six lectures in shape memory, Centre Recherches Mathématiques, CRM, Proceedings and Lectures Notes, 13 (1998).

    [15]

    S. Nicaise, Stability and controllability of the electromagneto-elastic system, Post. Math., 60 (2003), 73-80.

    [16]

    W. Nowacki, Some general theorems of thermopiezoelectricity, J. Thermal Stresses, 1 (1978), 171-182.doi: 10.1080/01495737808926940.

    [17]

    J. M. Sejje Suárez, Modelagem de fenômenos termopiezoelétricos: Analise assintótica e Simulação Numérica, Tese de Doutorado (2011) Laboratório Nacional de Computação Cientifica (LNCC-MCT), Brasil. (in Portuguese)

    [18]

    J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica Pura ed. Applicata, (IV), CXLVI (1987), 65-96.doi: 10.1007/BF01762360.

    [19]

    R. C. Smith, "Smart Material Systems. Model Development," SIAM, Frontiers in Applied Mathematics, 2005.doi: 10.1137/1.9780898717471.

    [20]

    A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design," Cambridge University Press, Cambridge, UK, 2001.

    [21]

    K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors," Kluwer Academic Publishers, Boston, 1997.doi: 10.1007/978-1-4613-1463-9.

    [22]

    E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl., 74 (1995), 291-315.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return