Advanced Search
Article Contents
Article Contents

A thermo piezoelectric model: Exponential decay of the total energy

Abstract Related Papers Cited by
  • We consider a linear evolution model describing a piezoelectric phenomenon under thermal effects as suggested by R. Mindlin [13] and W. Nowacki [16]. We prove the equivalence between exponential decay of the total energy and an observability inequality for an anisotropic elastic wave system. Our strategy is to use a decoupling method to reduce the problem to an equivalent observability inequality for an anisotropic elastic wave system and assume a condition which guarantees that the corresponding elliptic operator has no eigenfunctions with null divergence.
    Mathematics Subject Classification: 35B40, 74H40.


    \begin{equation} \\ \end{equation}
  • [1]

    K. Ammari and S. Nicaise, Stabilization of a piezoelectric system, Asymptotic Analysis, 73 (2011), 125-146.


    I. Babuska, Error bounds for finite element method, Numerishe Mathematik, 16 (1971), 322-333.


    P. G. Ciarlet, "Mathematical Elasticity, Vols I and II," North-Holland, Amsterdam, I, 1988, II, 1997.


    C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271.doi: 10.1007/BF00276727.


    H. Funakubo, "Ed. Shape Memory Alloys," Translated from the Japanese by J. B. Kennedy, Gordon and Breach Science Publishers, New York, 1984.


    D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. TMA, 21 (1993), 65-75.doi: 10.1016/0362-546X(93)90178-U.


    D. Iessan, On some theorems in Thermopiezoelectricity, J. Thermal Stresses, 12 (1989), 209-223.doi: 10.1080/01495738908961962.


    B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation, ESAIM, Control Optimization and Calculus of Variations, 12 (2006), 198-215.doi: 10.1051/cocv:2005028.


    B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media, SIAM, J. Control and Optim., 46 (2007), 1080-1097.doi: 10.1137/050629884.


    G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Rational Mech. Anal., 148 (1999), 179-231.doi: 10.1007/s002050050160.


    J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systèmes Distribués," Tome 1, Contrôlabilité Exacte, Masson 1988.


    B. Miara and M. Lima, Energy decay in piezoelectric systems, Applicable Analysis, 88 (2009), 947-960.doi: 10.1080/00036810903042166.


    R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates, International Journal of Solid Structures, 10 (1974), 625-637.doi: 10.1016/0020-7683(74)90047-X.


    I. Müller, Six lectures in shape memory, Centre Recherches Mathématiques, CRM, Proceedings and Lectures Notes, 13 (1998).


    S. Nicaise, Stability and controllability of the electromagneto-elastic system, Post. Math., 60 (2003), 73-80.


    W. Nowacki, Some general theorems of thermopiezoelectricity, J. Thermal Stresses, 1 (1978), 171-182.doi: 10.1080/01495737808926940.


    J. M. Sejje Suárez, Modelagem de fenômenos termopiezoelétricos: Analise assintótica e Simulação Numérica, Tese de Doutorado (2011) Laboratório Nacional de Computação Cientifica (LNCC-MCT), Brasil. (in Portuguese)


    J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica Pura ed. Applicata, (IV), CXLVI (1987), 65-96.doi: 10.1007/BF01762360.


    R. C. Smith, "Smart Material Systems. Model Development," SIAM, Frontiers in Applied Mathematics, 2005.doi: 10.1137/1.9780898717471.


    A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design," Cambridge University Press, Cambridge, UK, 2001.


    K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors," Kluwer Academic Publishers, Boston, 1997.doi: 10.1007/978-1-4613-1463-9.


    E. Zuazua, Controllability of the linear system of thermoelasticity, J. Math. Pures Appl., 74 (1995), 291-315.

  • 加载中

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint