\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

How to distinguish a local semigroup from a global semigroup

Abstract Related Papers Cited by
  • For a given autonomous time-dependent system that generates either a global, in time, semigroup or else only a local, in time, semigroup, a test involving a linear eigenvalue problem is given which determines which of `global' or `local' holds. Numerical examples are given. A linear transformation $A$ is defined so that one has `global' or `local' depending on whether $A$ does not or does have a positive eigenvalue. There is a possible application to Navier-Stokes problems..
    Mathematics Subject Classification: Primary: 47H20; Secondary: 47N99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Brezis, "Operateurs Maximaux Monotones," North Holland, 1973.

    [2]

    G. da Prato, "Applications Croissantes et Èquations d'évolutions dans les Espacè de Banach," Academic Press 1976.

    [3]

    J. R. Dorroh and J. W. Neuberger, A theory of strongly continuous semigroups in terms of lie generators, J. Functional Analysis, 136 (1996), 114-126.doi: 10.1006/jfan.1996.0023.

    [4]

    E. Hille and R. Phillips, "Functional Analysis and Semigroups," American Mathematical Society, 1957.

    [5]

    J. Goldstein, "Semigroups of Linear Operators and Applications," Oxford, 1985.

    [6]

    Sophus Lie, "Differential-Gleichungen," AMS Chelsea Publishing, 1967, (Originally published, Leipzig, in 1891).doi: 10.1007/BF01444840.

    [7]

    J. W. Neuberger, A generator for a set of functions, Ill. J. Math., 9 (1965), 31-39.

    [8]

    J. W. Neuberger, An exponential formula for one-parameter semigroups of nonlinear transformations, J. Math. Soc. Japan, 18 (1966), 154-157.doi: 10.2969/jmsj/01820154.

    [9]

    J. W. Neuberger, Lie generators for local semigroups, Contemporary Mathematics, 513 (2010), 233-238.doi: 10.1090/conm/513/10086.

    [10]

    J. W. Neuberger, "Sobolev Gradients and Differential Equations," Springer Lecture Notes in Mathematics 1670, 2010 (Second Edition).doi: 10.1007/978-3-642-04041-2.

    [11]

    J. W. Neuberger, "A Sequence of Problems on Semigroups," Springer Problem Books, 2011.doi: 10.1007/978-1-4614-0430-9.

    [12]

    G. F. WebbRepresentation of semigroups of nonlinear nonexpansive transformations in Banach spaces, J. Math. Mech. 19 (1969/70), 159-170.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(53) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return