November  2013, 33(11&12): 5319-5325. doi: 10.3934/dcds.2013.33.5319

Understanding Thomas-Fermi-Like approximations: Averaging over oscillating occupied orbitals

1. 

Department of Physics and Quantum Theory Group, Tulane University, New Orleans, LA 70123, United States, United States

Received  December 2011 Published  May 2013

The Thomas-Fermi equation arises from the earliest density functional approximation for the ground-state energy of a many-electron system. Its solutions have been carefully studied by mathematicians, including J.A. Goldstein. Here we will review the approximation and its validity conditions from a physics perspective, explaining why the theory correctly describes the core electrons of an atom but fails to bind atoms to form molecules and solids. The valence electrons are poorly described in Thomas-Fermi theory, for two reasons: (1) This theory neglects the exchange-correlation energy, ``nature's glue". (2) It also makes a local density approximation for the kinetic energy, which neglects important shell-structure effects in the exact kinetic energy that are responsible for the structure of the periodic table of the elements. Finally, we present a tentative explanation for the fact that the shell-structure effects are relatively unimportant for the exact exchange energy, which can thus be more usefully described by a local density or semilocal approximation (as in the popular Kohn-Sham theory): The exact exchange energy from the occupied Kohn-Sham orbitals has an extra sum over orbital labels and an extra integration over space, in comparison to the kinetic energy, and thus averages out more of the atomic individuality of the orbital oscillations.
Citation: John P. Perdew, Adrienn Ruzsinszky. Understanding Thomas-Fermi-Like approximations: Averaging over oscillating occupied orbitals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5319-5325. doi: 10.3934/dcds.2013.33.5319
References:
[1]

A. Messiah, "Quantum Mechanics,", Dover, (1999). Google Scholar

[2]

L. H. Thomas, The calculation of atomic fields,, Proc. Cambridge Philos. Soc., 23 (1926), 542. doi: 10.1017/S0305004100011683. Google Scholar

[3]

E. Fermi, Un metodo statistico per la determinazione di alcune proprieta dell atomo,, Rend. Accad. Naz. Licei, 6 (1927), 602. Google Scholar

[4]

J. A. Goldstein and G. R. Rieder, Some extensions of Thomas-Fermi theory,, Lecture Notes in Mathematics, 1223 (1986), 110. doi: 10.1007/BFb0099187. Google Scholar

[5]

J. A. Goldstein and G. R. Rieder, Recent rigorous results in Thomas-Fermi theory,, Lecture Notes in Mathematics, 1394 (1989), 68. doi: 10.1007/BFb0086753. Google Scholar

[6]

P. Benilan, J. A. Goldstein and G. R. Rieder, Nonlinear elliptic system arising in electron-density theory,, Communications in Partial Differential Equations, 17 (1992), 2079. doi: 10.1080/03605309208820914. Google Scholar

[7]

G. R. Rieder, J. A. Goldstein and N. Naima, A convexified energy functional for the Fermi-Amaldi correction,, Discrete and Continuous Systems, 28 (2010), 41. doi: 10.3934/dcds.2010.28.41. Google Scholar

[8]

P. Hohenberg and W. Kohn, Inhomogeneous electron gas,, Phys. Rev., 136 (1964). doi: 10.1103/PhysRev.136.B864. Google Scholar

[9]

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation,, Phys. Rev., 140 (1965). doi: 10.1103/PhysRev.140.A1133. Google Scholar

[10]

S. Kurth and J. P. Perdew, Role of the exchange-correlation energy: Nature's glue,, Int. J. Quantum Chem., 77 (2000), 819. doi: 10.1002/(SICI)1097-461X(2000)77:5<814::AID-QUA3>3.0.CO;2-F. Google Scholar

[11]

J. P. Perdew, L. A. Constantin, E. Sagvolden and K. Burke, Relevance of the slowly-varying electron gas to atoms, molecules, and solids,, Phys. Rev. Lett., 97 (2006). doi: 10.1103/PhysRevLett.97.223002. Google Scholar

[12]

J. Schwinger, Thomas-Fermi model: The leading correction,, Phys. Rev. A, 22 (1980), 1827. doi: 10.1103/PhysRevA.22.1827. Google Scholar

[13]

B. G. Englert and J. Schwinger, Statistical atom: Some quantum improvements,, Phys. Rev. A, 29 (1984), 2339. doi: 10.1103/PhysRevA.29.2339. Google Scholar

[14]

E. H. Lieb, The stability of matter,, Rev. Mod. Phys., 48 (1976), 553. doi: 10.1103/RevModPhys.48.553. Google Scholar

[15]

L. A. Constantin, J. C. Snyder, J. P. Perdew and K. Burke, Ionization potentials in the limit of large atomic number,, J. Chem. Phys., 133 (2010). doi: 10.1063/1.3522767. Google Scholar

[16]

J. P. Perdew and S. Kurth, Density functionals for non-relativistic Coulomb systems in the new century,, in, 620 (2003), 1. doi: 10.1007/3-540-37072-2_1. Google Scholar

[17]

J. P. Perdew and L. A. Constantin, Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy,, Phys. Rev. B, 75 (2007). doi: 10.1103/PhysRevB.75.155109. Google Scholar

[18]

A. Cangi, D. Lee, P. Elliott, K. Burke and E. K. U. Gross, Electronic structure via potential functional approximations,, Phys. Rev. Lett., 106 (2011). doi: 10.1103/PhysRevLett.106.236404. Google Scholar

[19]

D. C. Langreth and J. P. Perdew, The exchange-correlation energy of a metallic surface,, Solid State Commun., 17 (1975), 1425. doi: 10.1016/0038-1098(75)90618-3. Google Scholar

[20]

O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids,, Phys. Rev. B, 13 (1976), 4274. doi: 10.1016/0375-9601(76)90557-0. Google Scholar

[21]

D. C. Langreth and J. P. Perdew, Exchange-correlation energy of a metallic surface: Wavevector analysis,, Phys. Rev. B, 15 (1977), 2884. Google Scholar

show all references

References:
[1]

A. Messiah, "Quantum Mechanics,", Dover, (1999). Google Scholar

[2]

L. H. Thomas, The calculation of atomic fields,, Proc. Cambridge Philos. Soc., 23 (1926), 542. doi: 10.1017/S0305004100011683. Google Scholar

[3]

E. Fermi, Un metodo statistico per la determinazione di alcune proprieta dell atomo,, Rend. Accad. Naz. Licei, 6 (1927), 602. Google Scholar

[4]

J. A. Goldstein and G. R. Rieder, Some extensions of Thomas-Fermi theory,, Lecture Notes in Mathematics, 1223 (1986), 110. doi: 10.1007/BFb0099187. Google Scholar

[5]

J. A. Goldstein and G. R. Rieder, Recent rigorous results in Thomas-Fermi theory,, Lecture Notes in Mathematics, 1394 (1989), 68. doi: 10.1007/BFb0086753. Google Scholar

[6]

P. Benilan, J. A. Goldstein and G. R. Rieder, Nonlinear elliptic system arising in electron-density theory,, Communications in Partial Differential Equations, 17 (1992), 2079. doi: 10.1080/03605309208820914. Google Scholar

[7]

G. R. Rieder, J. A. Goldstein and N. Naima, A convexified energy functional for the Fermi-Amaldi correction,, Discrete and Continuous Systems, 28 (2010), 41. doi: 10.3934/dcds.2010.28.41. Google Scholar

[8]

P. Hohenberg and W. Kohn, Inhomogeneous electron gas,, Phys. Rev., 136 (1964). doi: 10.1103/PhysRev.136.B864. Google Scholar

[9]

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation,, Phys. Rev., 140 (1965). doi: 10.1103/PhysRev.140.A1133. Google Scholar

[10]

S. Kurth and J. P. Perdew, Role of the exchange-correlation energy: Nature's glue,, Int. J. Quantum Chem., 77 (2000), 819. doi: 10.1002/(SICI)1097-461X(2000)77:5<814::AID-QUA3>3.0.CO;2-F. Google Scholar

[11]

J. P. Perdew, L. A. Constantin, E. Sagvolden and K. Burke, Relevance of the slowly-varying electron gas to atoms, molecules, and solids,, Phys. Rev. Lett., 97 (2006). doi: 10.1103/PhysRevLett.97.223002. Google Scholar

[12]

J. Schwinger, Thomas-Fermi model: The leading correction,, Phys. Rev. A, 22 (1980), 1827. doi: 10.1103/PhysRevA.22.1827. Google Scholar

[13]

B. G. Englert and J. Schwinger, Statistical atom: Some quantum improvements,, Phys. Rev. A, 29 (1984), 2339. doi: 10.1103/PhysRevA.29.2339. Google Scholar

[14]

E. H. Lieb, The stability of matter,, Rev. Mod. Phys., 48 (1976), 553. doi: 10.1103/RevModPhys.48.553. Google Scholar

[15]

L. A. Constantin, J. C. Snyder, J. P. Perdew and K. Burke, Ionization potentials in the limit of large atomic number,, J. Chem. Phys., 133 (2010). doi: 10.1063/1.3522767. Google Scholar

[16]

J. P. Perdew and S. Kurth, Density functionals for non-relativistic Coulomb systems in the new century,, in, 620 (2003), 1. doi: 10.1007/3-540-37072-2_1. Google Scholar

[17]

J. P. Perdew and L. A. Constantin, Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy,, Phys. Rev. B, 75 (2007). doi: 10.1103/PhysRevB.75.155109. Google Scholar

[18]

A. Cangi, D. Lee, P. Elliott, K. Burke and E. K. U. Gross, Electronic structure via potential functional approximations,, Phys. Rev. Lett., 106 (2011). doi: 10.1103/PhysRevLett.106.236404. Google Scholar

[19]

D. C. Langreth and J. P. Perdew, The exchange-correlation energy of a metallic surface,, Solid State Commun., 17 (1975), 1425. doi: 10.1016/0038-1098(75)90618-3. Google Scholar

[20]

O. Gunnarsson and B. I. Lundqvist, Exchange and correlation in atoms, molecules, and solids,, Phys. Rev. B, 13 (1976), 4274. doi: 10.1016/0375-9601(76)90557-0. Google Scholar

[21]

D. C. Langreth and J. P. Perdew, Exchange-correlation energy of a metallic surface: Wavevector analysis,, Phys. Rev. B, 15 (1977), 2884. Google Scholar

[1]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Naima Naheed. A convexified energy functional for the Fermi-Amaldi correction. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 41-65. doi: 10.3934/dcds.2010.28.41

[2]

Wei Deng, Baisheng Yan. On Landau-Lifshitz equations of no-exchange energy models in ferromagnetics. Evolution Equations & Control Theory, 2013, 2 (4) : 599-620. doi: 10.3934/eect.2013.2.599

[3]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

[4]

Simone Creo, Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. Approximation of a nonlinear fractal energy functional on varying Hilbert spaces. Communications on Pure & Applied Analysis, 2018, 17 (2) : 647-669. doi: 10.3934/cpaa.2018035

[5]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic & Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[6]

Rafael O. Ruggiero. On the density of mechanical Lagrangians in $T^{2}$ without continuous invariant graphs in all supercritical energy levels. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 661-679. doi: 10.3934/dcdsb.2008.10.661

[7]

Liren Lin, I-Liang Chern. A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1119-1128. doi: 10.3934/dcdsb.2014.19.1119

[8]

Julius Fergy T. Rabago, Hideyuki Azegami. A new energy-gap cost functional approach for the exterior Bernoulli free boundary problem. Evolution Equations & Control Theory, 2019, 8 (4) : 785-824. doi: 10.3934/eect.2019038

[9]

Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189

[10]

Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063

[11]

Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855

[12]

Michele Carriero, Antonio Leaci, Franco Tomarelli. Uniform density estimates for Blake & Zisserman functional. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1129-1150. doi: 10.3934/dcds.2011.31.1129

[13]

Guillaume Bal, Olivier Pinaud. Self-averaging of kinetic models for waves in random media. Kinetic & Related Models, 2008, 1 (1) : 85-100. doi: 10.3934/krm.2008.1.85

[14]

Patricia Bauman, Andrea C. Rubiano. Energy-minimizing nematic elastomers. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 259-282. doi: 10.3934/dcdss.2015.8.259

[15]

Antonin Chambolle, Francesco Doveri. Minimizing movements of the Mumford and Shah energy. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 153-174. doi: 10.3934/dcds.1997.3.153

[16]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Fabiana Travessini De Cezaro. Equipartition of energy for nonautonomous wave equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 75-85. doi: 10.3934/dcdss.2017004

[17]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. On a system of semirelativistic equations in the energy space. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1343-1355. doi: 10.3934/cpaa.2015.14.1343

[18]

Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473

[19]

Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129

[20]

Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]