\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation

Abstract Related Papers Cited by
  • The main goal of this paper is to prove existence of global solutions in time for an Allen-Cahn-Gurtin model of pseudo-parabolic type. Local solutions were known to ``blow up" in some sense in finite time. It is proved that the equation is actually governed by a monotone-like operator. It turns out to be multivalued and measure-valued. The measures are singular with respect to the Lebesgue measure. This operator allows to extend the local solutions globally in time and to fully solve the evolution problem. The asymptotic behavior is also analyzed.
    Mathematics Subject Classification: Primary: 35K85, 35D99; Secondary: 65M60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Abels and M. Wilke, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), 3176-3193.doi: 10.1016/j.na.2006.10.002.

    [2]

    H. Brezis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," North-Holland Publishing Co., Amsterdam, 1973.

    [3]

    H. Brezis and F. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris, 287 (1978), 113-115.

    [4]

    T. Cazenave and A. Haraux, "Introduction aux Problèmes D'évolution Semi-Linéaires," Mathématiques & Applications (Paris), 1, Ellipses, Paris, 1990.

    [5]

    L. Cherfils and A. Miranville, Finite dimensional attractors for a model of Allen-Cahn equation based on a microforce balance, C. R. Acad. Sci. Paris, Sér. I, Math., 329 (1999), 1109-1114.doi: 10.1016/S0764-4442(00)88483-9.

    [6]

    L. Cherfils and Mo. Pierre, Non-global existence for an Allen-Cahn-Gurtin equation with logarithmic free energy, J. Evol. Equ., 8 (2008), 727-748.doi: 10.1007/s00028-008-0412-5.

    [7]

    E. DiBenedetto and Mi. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821-854.doi: 10.1512/iumj.1981.30.30062.

    [8]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 2001.

    [9]

    M. Grun-Rehomme, Caractérisation du sous-différentiel d'intégrandes convexes dans les espaces de Sobolev, J. Math. Pures et Appl., 56 (1977), 149-156.

    [10]

    M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192.doi: 10.1016/0167-2789(95)00173-5.

    [11]

    A. Henrot et Mi. Pierre, "Variation et Optimisation de Formes: Une Analyse Géométrique," Mathématiques & Applications 48, Springer, 2005.

    [12]

    J.-L. Lions, "Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires," Dunod., 1969.

    [13]

    A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1247-1252.doi: 10.1016/S0764-4442(99)80448-0.

    [14]

    V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems," Springer Series in Computational Mathematics, 25, Springer-Verlag, Berlin, 2006.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(51) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return