November  2013, 33(11&12): 5347-5377. doi: 10.3934/dcds.2013.33.5347

Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation

1. 

ENS Cachan Bretagne, IRMAR, EUB, Campus de Ker Lann, 35170 Bruz

2. 

Université de Poitiers, Laboratoire de Mathématiques, et Applications UMR CNRS 7348, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil, France

Received  March 2012 Revised  December 2012 Published  May 2013

The main goal of this paper is to prove existence of global solutions in time for an Allen-Cahn-Gurtin model of pseudo-parabolic type. Local solutions were known to ``blow up" in some sense in finite time. It is proved that the equation is actually governed by a monotone-like operator. It turns out to be multivalued and measure-valued. The measures are singular with respect to the Lebesgue measure. This operator allows to extend the local solutions globally in time and to fully solve the evolution problem. The asymptotic behavior is also analyzed.
Citation: Michel Pierre, Morgan Pierre. Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5347-5377. doi: 10.3934/dcds.2013.33.5347
References:
[1]

H. Abels and M. Wilke, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy,, Nonlinear Anal., 67 (2007), 3176.  doi: 10.1016/j.na.2006.10.002.  Google Scholar

[2]

H. Brezis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland Publishing Co., (1973).   Google Scholar

[3]

H. Brezis and F. Browder, Sur une propriété des espaces de Sobolev,, C. R. Acad. Sci. Paris, 287 (1978), 113.   Google Scholar

[4]

T. Cazenave and A. Haraux, "Introduction aux Problèmes D'évolution Semi-Linéaires,", Mathématiques & Applications (Paris), 1 (1990).   Google Scholar

[5]

L. Cherfils and A. Miranville, Finite dimensional attractors for a model of Allen-Cahn equation based on a microforce balance,, C. R. Acad. Sci. Paris, 329 (1999), 1109.  doi: 10.1016/S0764-4442(00)88483-9.  Google Scholar

[6]

L. Cherfils and Mo. Pierre, Non-global existence for an Allen-Cahn-Gurtin equation with logarithmic free energy,, J. Evol. Equ., 8 (2008), 727.  doi: 10.1007/s00028-008-0412-5.  Google Scholar

[7]

E. DiBenedetto and Mi. Pierre, On the maximum principle for pseudoparabolic equations,, Indiana Univ. Math. J., 30 (1981), 821.  doi: 10.1512/iumj.1981.30.30062.  Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (2001).   Google Scholar

[9]

M. Grun-Rehomme, Caractérisation du sous-différentiel d'intégrandes convexes dans les espaces de Sobolev,, J. Math. Pures et Appl., 56 (1977), 149.   Google Scholar

[10]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Phys. D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[11]

A. Henrot et Mi. Pierre, "Variation et Optimisation de Formes: Une Analyse Géométrique,", Mathématiques & Applications 48, 48 (2005).   Google Scholar

[12]

J.-L. Lions, "Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires,", Dunod., (1969).   Google Scholar

[13]

A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance,, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1247.  doi: 10.1016/S0764-4442(99)80448-0.  Google Scholar

[14]

V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Springer Series in Computational Mathematics, 25 (2006).   Google Scholar

show all references

References:
[1]

H. Abels and M. Wilke, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy,, Nonlinear Anal., 67 (2007), 3176.  doi: 10.1016/j.na.2006.10.002.  Google Scholar

[2]

H. Brezis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland Publishing Co., (1973).   Google Scholar

[3]

H. Brezis and F. Browder, Sur une propriété des espaces de Sobolev,, C. R. Acad. Sci. Paris, 287 (1978), 113.   Google Scholar

[4]

T. Cazenave and A. Haraux, "Introduction aux Problèmes D'évolution Semi-Linéaires,", Mathématiques & Applications (Paris), 1 (1990).   Google Scholar

[5]

L. Cherfils and A. Miranville, Finite dimensional attractors for a model of Allen-Cahn equation based on a microforce balance,, C. R. Acad. Sci. Paris, 329 (1999), 1109.  doi: 10.1016/S0764-4442(00)88483-9.  Google Scholar

[6]

L. Cherfils and Mo. Pierre, Non-global existence for an Allen-Cahn-Gurtin equation with logarithmic free energy,, J. Evol. Equ., 8 (2008), 727.  doi: 10.1007/s00028-008-0412-5.  Google Scholar

[7]

E. DiBenedetto and Mi. Pierre, On the maximum principle for pseudoparabolic equations,, Indiana Univ. Math. J., 30 (1981), 821.  doi: 10.1512/iumj.1981.30.30062.  Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (2001).   Google Scholar

[9]

M. Grun-Rehomme, Caractérisation du sous-différentiel d'intégrandes convexes dans les espaces de Sobolev,, J. Math. Pures et Appl., 56 (1977), 149.   Google Scholar

[10]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Phys. D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[11]

A. Henrot et Mi. Pierre, "Variation et Optimisation de Formes: Une Analyse Géométrique,", Mathématiques & Applications 48, 48 (2005).   Google Scholar

[12]

J.-L. Lions, "Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires,", Dunod., (1969).   Google Scholar

[13]

A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance,, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1247.  doi: 10.1016/S0764-4442(99)80448-0.  Google Scholar

[14]

V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Springer Series in Computational Mathematics, 25 (2006).   Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[11]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[12]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[16]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[17]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]