November  2013, 33(11&12): 5407-5428. doi: 10.3934/dcds.2013.33.5407

On the manifold of closed hypersurfaces in $\mathbb{R}^n$

1. 

Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-60120 Halle

2. 

Department of Mathematics, Vanderbilt University, Nashville, TN 37240

Received  August 2011 Revised  December 2011 Published  May 2013

Several results from differential geometry of hypersurfaces in $\mathbb{R}^n$ are derived to form a tool box for the direct mapping method. The latter technique has been widely employed to solve problems with moving interfaces, and to study the asymptotics of the induced semiflows.
Citation: Jan Prüss, Gieri Simonett. On the manifold of closed hypersurfaces in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5407-5428. doi: 10.3934/dcds.2013.33.5407
References:
[1]

M. Bergner, J. Escher and F. Lippoth, On the blow up scenario for a class of parabolic moving boundary problems,, Nonlinear Anal., 75 (2012), 3951.  doi: 10.1016/j.na.2012.02.001.  Google Scholar

[2]

M. P. Do Carmo, "Riemannian Geometry,", Mathematics: Theory & Applications, (1992).   Google Scholar

[3]

J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with surface tension,, Adv. Differential Equations, 2 (1997), 619.   Google Scholar

[4]

J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model,, J. Differential Equations, 143 (1998), 267.  doi: 10.1006/jdeq.1997.3373.  Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition. Classics in Mathematics, (1998).   Google Scholar

[6]

E. I. Hanzawa, Classical solutions of the Stefan problem,, Tôhoku Math. Jour., 33 (1981), 297.  doi: 10.2748/tmj/1178229399.  Google Scholar

[7]

M. Kimura, Geometry of hypersurfaces and moving hypersurfaces in $\mathbbR^m$ for the study of moving boundary problems,, Topics in Mathematical Modeling, (2008), 39.   Google Scholar

[8]

M. Köhne, J. Prüss and M. Wilke, On quasilinear parabolic evolution equations in weighted $L_p$-spaces,, J. Evol. Eqns., 10 (2010), 443.  doi: 10.1007/s00028-010-0056-0.  Google Scholar

[9]

M. Köhne, J. Prüss and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension,, Math. Ann., ().  doi: 10.1007/s00208-012-0860-7.  Google Scholar

[10]

W. Kühnel, "Differential Geometry. Curves-Surfaces-Manifolds,", Student Mathematical Library, 16 (2002).   Google Scholar

[11]

J. Prüss, Y. Shibata, S. Shimizu and G. Simonett, On well-posedness of incompressible two-phase flows with phase transition: The case of equal densities,, Evol. Eqns. & Control Th., 1 (2012), 171.  doi: 10.3934/eect.2012.1.171.  Google Scholar

[12]

J. Prüss, G. Simonett and M. Wilke, On thermodynamically consistent Stefan problems with variable surface energy,, submitted, ().   Google Scholar

[13]

J. Prüss, G. Simonett and R. Zacher, Qualitative behaviour of solutions for thermodynamically consistent Stefan problems with surface tension,, Arch. Ration. Mech. Anal., 207 (2013), 611.  doi: 10.1007/s00205-012-0571-y.  Google Scholar

show all references

References:
[1]

M. Bergner, J. Escher and F. Lippoth, On the blow up scenario for a class of parabolic moving boundary problems,, Nonlinear Anal., 75 (2012), 3951.  doi: 10.1016/j.na.2012.02.001.  Google Scholar

[2]

M. P. Do Carmo, "Riemannian Geometry,", Mathematics: Theory & Applications, (1992).   Google Scholar

[3]

J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with surface tension,, Adv. Differential Equations, 2 (1997), 619.   Google Scholar

[4]

J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model,, J. Differential Equations, 143 (1998), 267.  doi: 10.1006/jdeq.1997.3373.  Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition. Classics in Mathematics, (1998).   Google Scholar

[6]

E. I. Hanzawa, Classical solutions of the Stefan problem,, Tôhoku Math. Jour., 33 (1981), 297.  doi: 10.2748/tmj/1178229399.  Google Scholar

[7]

M. Kimura, Geometry of hypersurfaces and moving hypersurfaces in $\mathbbR^m$ for the study of moving boundary problems,, Topics in Mathematical Modeling, (2008), 39.   Google Scholar

[8]

M. Köhne, J. Prüss and M. Wilke, On quasilinear parabolic evolution equations in weighted $L_p$-spaces,, J. Evol. Eqns., 10 (2010), 443.  doi: 10.1007/s00028-010-0056-0.  Google Scholar

[9]

M. Köhne, J. Prüss and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension,, Math. Ann., ().  doi: 10.1007/s00208-012-0860-7.  Google Scholar

[10]

W. Kühnel, "Differential Geometry. Curves-Surfaces-Manifolds,", Student Mathematical Library, 16 (2002).   Google Scholar

[11]

J. Prüss, Y. Shibata, S. Shimizu and G. Simonett, On well-posedness of incompressible two-phase flows with phase transition: The case of equal densities,, Evol. Eqns. & Control Th., 1 (2012), 171.  doi: 10.3934/eect.2012.1.171.  Google Scholar

[12]

J. Prüss, G. Simonett and M. Wilke, On thermodynamically consistent Stefan problems with variable surface energy,, submitted, ().   Google Scholar

[13]

J. Prüss, G. Simonett and R. Zacher, Qualitative behaviour of solutions for thermodynamically consistent Stefan problems with surface tension,, Arch. Ration. Mech. Anal., 207 (2013), 611.  doi: 10.1007/s00205-012-0571-y.  Google Scholar

[1]

Georgi I. Kamberov. Recovering the shape of a surface from the mean curvature. Conference Publications, 1998, 1998 (Special) : 353-359. doi: 10.3934/proc.1998.1998.353

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

[4]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[5]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[6]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[7]

Matteo Cozzi. On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5769-5786. doi: 10.3934/dcds.2015.35.5769

[8]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[9]

Xi-Nan Ma, Jiang Ye, Yun-Hua Ye. Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $R^3$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 225-243. doi: 10.3934/cpaa.2011.10.225

[10]

Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010

[11]

Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019228

[12]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[13]

Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure & Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311

[14]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[15]

Joel Spruck, Ling Xiao. Convex spacelike hypersurfaces of constant curvature in de Sitter space. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2225-2242. doi: 10.3934/dcdsb.2012.17.2225

[16]

Katsuyuki Ishii, Takahiro Izumi. Remarks on the convergence of an algorithm for curvature-dependent motions of hypersurfaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1103-1125. doi: 10.3934/dcds.2018046

[17]

Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076

[18]

G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11.

[19]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[20]

Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020153

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]