November  2013, 33(11&12): 5441-5455. doi: 10.3934/dcds.2013.33.5441

Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements

1. 

Department of Mathematics, Tulane University, New Orleans, LA 70118, United States

2. 

Mathematics Department, Tulane University, New Orleans, LA 70118

3. 

Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, United States

Received  August 2011 Revised  March 2012 Published  May 2013

We propose a new method for estimating the eigenvalues of the thermal tensor of an anisotropically heat-conducting material, from transient thermal probe measurements of a heated thin cylinder.
    We assume the principal axes of the thermal tensor to have been identified, and that the cylinder is oriented parallel to one of these axes (but we outline what is needed to overcome this limitation). The method involves estimating the first two Dirichlet eigenvalues (exponential decay rates) from transient thermal probe data. These implicitly determine the thermal diffusion coefficients (thermal tensor eigenvalues) in the directions of the other two axes. The process is repeated two more times with cylinders parallel to each of the remaining axes.
    The method is tested by simulating a temperature probe time-series (obtained by solving the anisotropic heat equation numerically) and comparing the computed thermal tensor eigenvalues with their true values. The results are generally accurate to less than $1\%$ error.
Citation: Steve Rosencrans, Xuefeng Wang, Shan Zhao. Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5441-5455. doi: 10.3934/dcds.2013.33.5441
References:
[1]

F. M. Arscott, "Periodic Differential Equations,", Pergamon Press, (1964).   Google Scholar

[2]

G. Backstrom and J. Chaussy, Determination of thermal conductivity tensor and heat capacity of insulating solids,, J. Phys. E: Sci. Instrum., 10 (1977), 767.  doi: 10.1088/0022-3735/10/8/003.  Google Scholar

[3]

U. Brydsten and G. Backstrom, Hot strip determination of the thermal conductivity tensor and heat capacity of crystals,, Int'l. J. Thermophysics, 4 (1983), 369.  doi: 10.1007/BF01178787.  Google Scholar

[4]

H. S. Carslaw and J. C. Jaeger, "Conduction of Heat in Solids,", $2^\text{nd}$ edition, (1959).   Google Scholar

[5]

V. Isakov, "Inverse Problems for Partial Differential Equation,", Springer, (1998).   Google Scholar

[6]

J. Li, S. Rosencrans, X. Wang and K. Zhang, Asymptotic analysis of a Dirichlet problem for the heat equation on a coated body,, Proceedings of the American Math. Society, 137 (2009), 1711.  doi: 10.1090/S0002-9939-08-09766-9.  Google Scholar

[7]

J. M. Macleod, Instructions for operating the divided bar apparatus for thermal conductivity measurement at the GSC, calgary,, Open File \textbf{3444}, 3444 (1997).  doi: 10.4095/209020.  Google Scholar

[8]

V. Pereyra and G. Scherer, Exponential data fitting,, in, (2010), 1.  doi: 10.2174/97816080504821100101.  Google Scholar

[9]

Per Sundqvist, Exponential curve-fitting without start-guess,, \url{http://www.mathworks.com/matlabcentral/fileexchange/21959}., ().   Google Scholar

show all references

References:
[1]

F. M. Arscott, "Periodic Differential Equations,", Pergamon Press, (1964).   Google Scholar

[2]

G. Backstrom and J. Chaussy, Determination of thermal conductivity tensor and heat capacity of insulating solids,, J. Phys. E: Sci. Instrum., 10 (1977), 767.  doi: 10.1088/0022-3735/10/8/003.  Google Scholar

[3]

U. Brydsten and G. Backstrom, Hot strip determination of the thermal conductivity tensor and heat capacity of crystals,, Int'l. J. Thermophysics, 4 (1983), 369.  doi: 10.1007/BF01178787.  Google Scholar

[4]

H. S. Carslaw and J. C. Jaeger, "Conduction of Heat in Solids,", $2^\text{nd}$ edition, (1959).   Google Scholar

[5]

V. Isakov, "Inverse Problems for Partial Differential Equation,", Springer, (1998).   Google Scholar

[6]

J. Li, S. Rosencrans, X. Wang and K. Zhang, Asymptotic analysis of a Dirichlet problem for the heat equation on a coated body,, Proceedings of the American Math. Society, 137 (2009), 1711.  doi: 10.1090/S0002-9939-08-09766-9.  Google Scholar

[7]

J. M. Macleod, Instructions for operating the divided bar apparatus for thermal conductivity measurement at the GSC, calgary,, Open File \textbf{3444}, 3444 (1997).  doi: 10.4095/209020.  Google Scholar

[8]

V. Pereyra and G. Scherer, Exponential data fitting,, in, (2010), 1.  doi: 10.2174/97816080504821100101.  Google Scholar

[9]

Per Sundqvist, Exponential curve-fitting without start-guess,, \url{http://www.mathworks.com/matlabcentral/fileexchange/21959}., ().   Google Scholar

[1]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[2]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[3]

Renata Bunoiu, Claudia Timofte. Homogenization of a thermal problem with flux jump. Networks & Heterogeneous Media, 2016, 11 (4) : 545-562. doi: 10.3934/nhm.2016009

[4]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[5]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[6]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[7]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure & Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[8]

María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446

[9]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[10]

H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[13]

Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405

[14]

Mikko Orispää, Markku Lehtinen. Fortran linear inverse problem solver. Inverse Problems & Imaging, 2010, 4 (3) : 485-503. doi: 10.3934/ipi.2010.4.485

[15]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[16]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[17]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[18]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[19]

Adriana C. Briozzo, María F. Natale, Domingo A. Tarzia. The Stefan problem with temperature-dependent thermal conductivity and a convective term with a convective condition at the fixed face. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1209-1220. doi: 10.3934/cpaa.2010.9.1209

[20]

Hermann Gross, Sebastian Heidenreich, Mark-Alexander Henn, Markus Bär, Andreas Rathsfeld. Modeling aspects to improve the solution of the inverse problem in scatterometry. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 497-519. doi: 10.3934/dcdss.2015.8.497

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]