Advanced Search
Article Contents
Article Contents

Hardy type inequalities and hidden energies

Abstract Related Papers Cited by
  • We obtain new insights into Hardy type Inequalities and the evolution problems associated to them. Surprisingly, the connection of the energy with the Hardy functionals is nontrivial, due to the presence of a Hardy singularity energy. This corresponds to a loss for the total energy. These problems are defined on bounded domains or the whole space.
        We also consider equivalent problems with inverse square potential on exterior domains or the whole space. The extra energy term is then present as an effect that comes from infinity, a kind of hidden energy. In this case, in an unexpected way, this term is additive to the total energy, and it may even constitute the main part of it.
    Mathematics Subject Classification: Primary: 35A23, 46E35; Secondary: 35J20, 35J75.


    \begin{equation} \\ \end{equation}
  • [1]

    Adimurthi, S. Filippas and A. Tertikas, On the best constant of Hardy-Sobolev inequalities, Nonlinear An. TMA, 70 (2009), 2826-2833.doi: 10.1016/j.na.2008.12.019.


    P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139.doi: 10.1090/S0002-9947-1984-0742415-3.


    H. Brezis and M. Marcus, Hardy's inequality revisited, Ann. Sc. Norm. Pisa, 25 (1997), 217-237.


    H. Brezis and J. L. Vázquez, Blowup solutions of some nonlinear elliptic problems, Revista Mat. Univ. Complutense Madrid, 10 (1997), 443-469.


    X. Cabré and Y. Martel, Existence versus explosion instantané pour des equations de lachaleur linéaires avec potentiel singulier, C. R. Acad. Sci. Paris, 329 (1999), 973-978.doi: 10.1016/S0764-4442(00)88588-2.


    C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results, J. Funct. Anal., 263 (2012), 3741-3783.doi: 10.1016/j.jfa.2012.09.006.


    E. B. Davies, A review of Hardy inequalities, Oper. Theory Adv. Appl., 110 (1999), 55-67.


    M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Non. Anal. TMA, 11 (1987), 1103-1133.doi: 10.1016/0362-546X(87)90001-0.


    S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233; Corrigendum, J. Funct. Anal., 255 (2008), 2095.doi: 10.1006/jfan.2001.3900.


    N. Ghoussoub and A. Moradifam, Bessel potentials and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57.doi: 10.1007/s00208-010-0510-x.


    J. A. Goldstein and Q. S. Zang, Linear parabolic equations with strong singular potentials, Trans. Amer. Math. Soc., 355 (2003), 197-211.doi: 10.1090/S0002-9947-02-03057-X.


    A. Kufner, L. Maligranda and L.-E. Persson, The Hardy inequality. About its history and some related results, Vydavatelsky' Servis, Plzen, 2007.


    V. G. Maz'ja, "Sobolev Spaces," Springer-Verlag, 1985.


    R. Musina, A note on the paper [9], J. Funct. Anal., 256 (2009), 2741-2745.doi: 10.1016/j.jfa.2008.08.009.


    B. Opic and A. Kufner, Hardy type inequalities, Pitman Rechearch Notes in Math., 219 Longman (1990).


    J. L. Vázquez and N. B. Zographopoulos, Functional aspects of the Hardy inequality. Appearance of a hidden energy, J. Evol. Equ., 12 (2012), 713-739.doi: 10.1007/s00028-012-0151-5.


    J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.doi: 10.1006/jfan.1999.3556.


    N. B. Zographopoulos, Existence of extremal functions for a Hardy-Sobolev inequality, J. Funct. Anal., 259 (2010), 308-314.doi: 10.1016/j.jfa.2010.03.020.

  • 加载中

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint