November  2013, 33(11&12): 5493-5506. doi: 10.3934/dcds.2013.33.5493

Semi linear parabolic equations with nonlinear general Wentzell boundary conditions

1. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377, United States

Received  October 2011 Revised  October 2012 Published  May 2013

Let $A$ be a uniformly elliptic operator in divergence form with bounded coefficients. We show that on a bounded domain $Ω ⊂ \mathbb{R}^N$ with Lipschitz continuous boundary $∂Ω$, a realization of $Au-\beta_1(x,u)$ in $C(\bar{Ω})$ with the nonlinear general Wentzell boundary conditions $[Au-\beta_1(x,u)]|_{∂Ω}-\Delta_\Gamma u+\partial_\nu^au+\beta_2(x,u)= 0$ on $∂Ω$ generates a strongly continuous nonlinear semigroup on $C(\bar{Ω})$. Here, $\partial_\nu^au$ is the conormal derivative of $u$, and $\beta_1(x,\cdot)$ ($x \in Ω$), $\beta_2(x,\cdot)$ ($x \in ∂Ω$) are continuous on $\mathbb{R}$ satisfying a certain growth condition.
Citation: Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493
References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, 65 (1975).   Google Scholar

[2]

M. Biegert and M. Warma, The heat equation with nonlinear generalized Robin boundary conditions,, J. Differential Equations, 247 (2009), 1949.  doi: 10.1016/j.jde.2009.07.017.  Google Scholar

[3]

M. Biegert and M. Warma, Some Quasi-linear elliptic Equations with inhomogeneous generalized Robin boundary conditions on "bad'' domains,, Adv. Differential Equations, 15 (2010), 893.   Google Scholar

[4]

G. M. Coclite, G. R. Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions,, J. Differential Equations, 246 (2009), 2434.  doi: 10.1016/j.jde.2008.10.004.  Google Scholar

[5]

M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces,, Amer. J. Math, 93 (1971), 265.  doi: 10.2307/2373376.  Google Scholar

[6]

P. Drábek and J. Milota, "Methods of Nonlinear Analysis. Applications to Differential Equations,", Birkhäuser Advanced Texts, (2007).   Google Scholar

[7]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[8]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with Wentzell boundary conditions,, J. Evol. Eq., 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[9]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition,, Adv. Differential Equations, 11 (2006), 481.   Google Scholar

[10]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions,, Adv. Differential Equations, 11 (2006), 457.   Google Scholar

[11]

M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators,, Ann. Mat. Pura Appl., 80 (1968), 1.  doi: 10.1007/BF02413623.  Google Scholar

[12]

M. M. Rao and Z. D. Ren, "Applications of Orlicz Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, 250 (2002).  doi: 10.1201/9780203910863.  Google Scholar

[13]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Amer. Math. Soc., (1997).   Google Scholar

[14]

M. Warma, Wentzell-Robin boundary conditions on $C[0,1]$,, Semigroup Forum, 66 (2003), 162.  doi: 10.1007/s002330010124.  Google Scholar

[15]

M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains,, Nonlinear Anal., 14 (2012), 5561.  doi: 10.1016/j.na.2012.05.004.  Google Scholar

[16]

M. Warma, Parabolic and elliptic problems with general Wentzell boundary conditions on Lipschitz domains,, Commun. Pure Appl. Anal., 12 (2013), 1881.  doi: 10.3934/cpaa.2013.12.1881.  Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, 65 (1975).   Google Scholar

[2]

M. Biegert and M. Warma, The heat equation with nonlinear generalized Robin boundary conditions,, J. Differential Equations, 247 (2009), 1949.  doi: 10.1016/j.jde.2009.07.017.  Google Scholar

[3]

M. Biegert and M. Warma, Some Quasi-linear elliptic Equations with inhomogeneous generalized Robin boundary conditions on "bad'' domains,, Adv. Differential Equations, 15 (2010), 893.   Google Scholar

[4]

G. M. Coclite, G. R. Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions,, J. Differential Equations, 246 (2009), 2434.  doi: 10.1016/j.jde.2008.10.004.  Google Scholar

[5]

M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces,, Amer. J. Math, 93 (1971), 265.  doi: 10.2307/2373376.  Google Scholar

[6]

P. Drábek and J. Milota, "Methods of Nonlinear Analysis. Applications to Differential Equations,", Birkhäuser Advanced Texts, (2007).   Google Scholar

[7]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[8]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with Wentzell boundary conditions,, J. Evol. Eq., 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[9]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition,, Adv. Differential Equations, 11 (2006), 481.   Google Scholar

[10]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions,, Adv. Differential Equations, 11 (2006), 457.   Google Scholar

[11]

M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators,, Ann. Mat. Pura Appl., 80 (1968), 1.  doi: 10.1007/BF02413623.  Google Scholar

[12]

M. M. Rao and Z. D. Ren, "Applications of Orlicz Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, 250 (2002).  doi: 10.1201/9780203910863.  Google Scholar

[13]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Amer. Math. Soc., (1997).   Google Scholar

[14]

M. Warma, Wentzell-Robin boundary conditions on $C[0,1]$,, Semigroup Forum, 66 (2003), 162.  doi: 10.1007/s002330010124.  Google Scholar

[15]

M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains,, Nonlinear Anal., 14 (2012), 5561.  doi: 10.1016/j.na.2012.05.004.  Google Scholar

[16]

M. Warma, Parabolic and elliptic problems with general Wentzell boundary conditions on Lipschitz domains,, Commun. Pure Appl. Anal., 12 (2013), 1881.  doi: 10.3934/cpaa.2013.12.1881.  Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[5]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[14]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[19]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[20]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]