November  2013, 33(11&12): 5493-5506. doi: 10.3934/dcds.2013.33.5493

Semi linear parabolic equations with nonlinear general Wentzell boundary conditions

1. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377, United States

Received  October 2011 Revised  October 2012 Published  May 2013

Let $A$ be a uniformly elliptic operator in divergence form with bounded coefficients. We show that on a bounded domain $Ω ⊂ \mathbb{R}^N$ with Lipschitz continuous boundary $∂Ω$, a realization of $Au-\beta_1(x,u)$ in $C(\bar{Ω})$ with the nonlinear general Wentzell boundary conditions $[Au-\beta_1(x,u)]|_{∂Ω}-\Delta_\Gamma u+\partial_\nu^au+\beta_2(x,u)= 0$ on $∂Ω$ generates a strongly continuous nonlinear semigroup on $C(\bar{Ω})$. Here, $\partial_\nu^au$ is the conormal derivative of $u$, and $\beta_1(x,\cdot)$ ($x \in Ω$), $\beta_2(x,\cdot)$ ($x \in ∂Ω$) are continuous on $\mathbb{R}$ satisfying a certain growth condition.
Citation: Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493
References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, 65 (1975). Google Scholar

[2]

M. Biegert and M. Warma, The heat equation with nonlinear generalized Robin boundary conditions,, J. Differential Equations, 247 (2009), 1949. doi: 10.1016/j.jde.2009.07.017. Google Scholar

[3]

M. Biegert and M. Warma, Some Quasi-linear elliptic Equations with inhomogeneous generalized Robin boundary conditions on "bad'' domains,, Adv. Differential Equations, 15 (2010), 893. Google Scholar

[4]

G. M. Coclite, G. R. Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions,, J. Differential Equations, 246 (2009), 2434. doi: 10.1016/j.jde.2008.10.004. Google Scholar

[5]

M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces,, Amer. J. Math, 93 (1971), 265. doi: 10.2307/2373376. Google Scholar

[6]

P. Drábek and J. Milota, "Methods of Nonlinear Analysis. Applications to Differential Equations,", Birkhäuser Advanced Texts, (2007). Google Scholar

[7]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504. doi: 10.1002/mana.200910086. Google Scholar

[8]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with Wentzell boundary conditions,, J. Evol. Eq., 2 (2002), 1. doi: 10.1007/s00028-002-8077-y. Google Scholar

[9]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition,, Adv. Differential Equations, 11 (2006), 481. Google Scholar

[10]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions,, Adv. Differential Equations, 11 (2006), 457. Google Scholar

[11]

M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators,, Ann. Mat. Pura Appl., 80 (1968), 1. doi: 10.1007/BF02413623. Google Scholar

[12]

M. M. Rao and Z. D. Ren, "Applications of Orlicz Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, 250 (2002). doi: 10.1201/9780203910863. Google Scholar

[13]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Amer. Math. Soc., (1997). Google Scholar

[14]

M. Warma, Wentzell-Robin boundary conditions on $C[0,1]$,, Semigroup Forum, 66 (2003), 162. doi: 10.1007/s002330010124. Google Scholar

[15]

M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains,, Nonlinear Anal., 14 (2012), 5561. doi: 10.1016/j.na.2012.05.004. Google Scholar

[16]

M. Warma, Parabolic and elliptic problems with general Wentzell boundary conditions on Lipschitz domains,, Commun. Pure Appl. Anal., 12 (2013), 1881. doi: 10.3934/cpaa.2013.12.1881. Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure and Applied Mathematics, 65 (1975). Google Scholar

[2]

M. Biegert and M. Warma, The heat equation with nonlinear generalized Robin boundary conditions,, J. Differential Equations, 247 (2009), 1949. doi: 10.1016/j.jde.2009.07.017. Google Scholar

[3]

M. Biegert and M. Warma, Some Quasi-linear elliptic Equations with inhomogeneous generalized Robin boundary conditions on "bad'' domains,, Adv. Differential Equations, 15 (2010), 893. Google Scholar

[4]

G. M. Coclite, G. R. Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions,, J. Differential Equations, 246 (2009), 2434. doi: 10.1016/j.jde.2008.10.004. Google Scholar

[5]

M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces,, Amer. J. Math, 93 (1971), 265. doi: 10.2307/2373376. Google Scholar

[6]

P. Drábek and J. Milota, "Methods of Nonlinear Analysis. Applications to Differential Equations,", Birkhäuser Advanced Texts, (2007). Google Scholar

[7]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504. doi: 10.1002/mana.200910086. Google Scholar

[8]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with Wentzell boundary conditions,, J. Evol. Eq., 2 (2002), 1. doi: 10.1007/s00028-002-8077-y. Google Scholar

[9]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition,, Adv. Differential Equations, 11 (2006), 481. Google Scholar

[10]

G. R. Goldstein, Derivation and physical interpretation of general boundary conditions,, Adv. Differential Equations, 11 (2006), 457. Google Scholar

[11]

M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators,, Ann. Mat. Pura Appl., 80 (1968), 1. doi: 10.1007/BF02413623. Google Scholar

[12]

M. M. Rao and Z. D. Ren, "Applications of Orlicz Spaces,", Monographs and Textbooks in Pure and Applied Mathematics, 250 (2002). doi: 10.1201/9780203910863. Google Scholar

[13]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Amer. Math. Soc., (1997). Google Scholar

[14]

M. Warma, Wentzell-Robin boundary conditions on $C[0,1]$,, Semigroup Forum, 66 (2003), 162. doi: 10.1007/s002330010124. Google Scholar

[15]

M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains,, Nonlinear Anal., 14 (2012), 5561. doi: 10.1016/j.na.2012.05.004. Google Scholar

[16]

M. Warma, Parabolic and elliptic problems with general Wentzell boundary conditions on Lipschitz domains,, Commun. Pure Appl. Anal., 12 (2013), 1881. doi: 10.3934/cpaa.2013.12.1881. Google Scholar

[1]

Genni Fragnelli, Gisèle Ruiz Goldstein, Jerome Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generalized Wentzell boundary conditions for second order operators with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 697-715. doi: 10.3934/dcdss.2016023

[2]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Enrico Obrecht, Silvia Romanelli. Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2475-2487. doi: 10.3934/cpaa.2016045

[3]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[4]

Antonio Marigonda. Second order conditions for the controllability of nonlinear systems with drift. Communications on Pure & Applied Analysis, 2006, 5 (4) : 861-885. doi: 10.3934/cpaa.2006.5.861

[5]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[6]

Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401

[7]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[8]

Mahamadi Warma. Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1881-1905. doi: 10.3934/cpaa.2013.12.1881

[9]

Andrea Bonfiglioli, Ermanno Lanconelli and Francesco Uguzzoni. Levi's parametrix for some sub-elliptic non-divergence form operators. Electronic Research Announcements, 2003, 9: 10-18.

[10]

Simona Fornaro, Giorgio Metafune, Diego Pallara, Roland Schnaubelt. Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift. Communications on Pure & Applied Analysis, 2015, 14 (2) : 407-419. doi: 10.3934/cpaa.2015.14.407

[11]

François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477-486. doi: 10.3934/proc.2007.2007.477

[12]

Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

[13]

Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261

[14]

Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004

[15]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[16]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control & Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[17]

Junichi Harada, Mitsuharu Ôtani. $H^2$-solutions for some elliptic equations with nonlinear boundary conditions. Conference Publications, 2009, 2009 (Special) : 333-339. doi: 10.3934/proc.2009.2009.333

[18]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[19]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[20]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]