\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Semi linear parabolic equations with nonlinear general Wentzell boundary conditions

Abstract Related Papers Cited by
  • Let $A$ be a uniformly elliptic operator in divergence form with bounded coefficients. We show that on a bounded domain $Ω ⊂ \mathbb{R}^N$ with Lipschitz continuous boundary $∂Ω$, a realization of $Au-\beta_1(x,u)$ in $C(\bar{Ω})$ with the nonlinear general Wentzell boundary conditions $[Au-\beta_1(x,u)]|_{∂Ω}-\Delta_\Gamma u+\partial_\nu^au+\beta_2(x,u)= 0$ on $∂Ω$ generates a strongly continuous nonlinear semigroup on $C(\bar{Ω})$. Here, $\partial_\nu^au$ is the conormal derivative of $u$, and $\beta_1(x,\cdot)$ ($x \in Ω$), $\beta_2(x,\cdot)$ ($x \in ∂Ω$) are continuous on $\mathbb{R}$ satisfying a certain growth condition.
    Mathematics Subject Classification: 35J20, 47H20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, 65. Academic Press, New York, 1975.

    [2]

    M. Biegert and M. Warma, The heat equation with nonlinear generalized Robin boundary conditions, J. Differential Equations, 247 (2009), 1949-1979.doi: 10.1016/j.jde.2009.07.017.

    [3]

    M. Biegert and M. Warma, Some Quasi-linear elliptic Equations with inhomogeneous generalized Robin boundary conditions on "bad'' domains, Adv. Differential Equations, 15 (2010), 893-924.

    [4]

    G. M. Coclite, G. R. Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions, J. Differential Equations, 246 (2009), 2434-2447doi: 10.1016/j.jde.2008.10.004.

    [5]

    M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math, 93 (1971), 265-298.doi: 10.2307/2373376.

    [6]

    P. Drábek and J. Milota, "Methods of Nonlinear Analysis. Applications to Differential Equations," Birkhäuser Advanced Texts, Birkhäuser, Basel, 2007.

    [7]

    A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521.doi: 10.1002/mana.200910086.

    [8]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with Wentzell boundary conditions, J. Evol. Eq., 2 (2002), 1-19.doi: 10.1007/s00028-002-8077-y.

    [9]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition, Adv. Differential Equations, 11 (2006), 481-510.

    [10]

    G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.

    [11]

    M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., 80 (1968), 1-122.doi: 10.1007/BF02413623.

    [12]

    M. M. Rao and Z. D. Ren, "Applications of Orlicz Spaces," Monographs and Textbooks in Pure and Applied Mathematics, 250. Marcel Dekker, Inc., New York, 2002.doi: 10.1201/9780203910863.

    [13]

    R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations," Amer. Math. Soc., Providence, RI, 1997.

    [14]

    M. Warma, Wentzell-Robin boundary conditions on $C[0,1]$, Semigroup Forum, 66 (2003), 162-170.doi: 10.1007/s002330010124.

    [15]

    M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains, Nonlinear Anal., 14 (2012), 5561-5588.doi: 10.1016/j.na.2012.05.004.

    [16]

    M. Warma, Parabolic and elliptic problems with general Wentzell boundary conditions on Lipschitz domains, Commun. Pure Appl. Anal., 12 (2013), 1881-1905.doi: 10.3934/cpaa.2013.12.1881.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(55) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return