-
Previous Article
Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients
- DCDS Home
- This Issue
-
Next Article
Positive solutions of nonlinear equations via comparison with linear operators
An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure
1. | Department of Mathematics, University of California, Other lines, Riverside, CA 92521, United States |
References:
[1] |
C. Foias and J.-C. Saut, Asymptotic behavior, as $t \to \infty$, of solutions of Navier-Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., 33 (1984), 459-477.
doi: 10.1512/iumj.1984.33.33025. |
[2] |
Z. Lei, F. H. Lin and Y. Zhou, Private, communications., ().
|
[3] |
G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the $3$D Navier-Stokes equations, Comm. Math. Phys., 159 (1994), 329-341.
doi: 10.1007/BF02102642. |
[4] |
M. E. Schonbek, T. P. Schonbek and Endre Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304 (1996), 717-756.
doi: 10.1007/BF01446316. |
show all references
References:
[1] |
C. Foias and J.-C. Saut, Asymptotic behavior, as $t \to \infty$, of solutions of Navier-Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., 33 (1984), 459-477.
doi: 10.1512/iumj.1984.33.33025. |
[2] |
Z. Lei, F. H. Lin and Y. Zhou, Private, communications., ().
|
[3] |
G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the $3$D Navier-Stokes equations, Comm. Math. Phys., 159 (1994), 329-341.
doi: 10.1007/BF02102642. |
[4] |
M. E. Schonbek, T. P. Schonbek and Endre Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations, Math. Ann., 304 (1996), 717-756.
doi: 10.1007/BF01446316. |
[1] |
Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67 |
[2] |
Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234 |
[3] |
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 |
[4] |
Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651 |
[5] |
Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122 |
[6] |
Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615 |
[7] |
Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052 |
[8] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[9] |
Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215 |
[10] |
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 |
[11] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[12] |
Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189 |
[13] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[14] |
Frederic Heihoff. Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4703-4719. doi: 10.3934/dcdsb.2020120 |
[15] |
Tao Wang, Huijiang Zhao, Qingyang Zou. One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinetic and Related Models, 2013, 6 (3) : 649-670. doi: 10.3934/krm.2013.6.649 |
[16] |
Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283 |
[17] |
Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080 |
[18] |
I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191 |
[19] |
Mohamad Rachid. Incompressible Navier-Stokes-Fourier limit from the Landau equation. Kinetic and Related Models, 2021, 14 (4) : 599-638. doi: 10.3934/krm.2021017 |
[20] |
Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2301-2340. doi: 10.3934/dcds.2020366 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]