• Previous Article
    Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients
  • DCDS Home
  • This Issue
  • Next Article
    Positive solutions of nonlinear equations via comparison with linear operators
November  2013, 33(11&12): 5521-5523. doi: 10.3934/dcds.2013.33.5521

An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure

1. 

Department of Mathematics, University of California, Other lines, Riverside, CA 92521, United States

Received  November 2011 Published  May 2013

We construct a global smooth solution of 3 dimensional Navier-Stokes equations in the torus, which also solves the heat equation. The solution is three dimensional and it can be arbitrarily large.
Citation: Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521
References:
[1]

C. Foias and J.-C. Saut, Asymptotic behavior, as $t \to \infty$, of solutions of Navier-Stokes equations and nonlinear spectral manifolds,, Indiana Univ. Math. J., 33 (1984), 459.  doi: 10.1512/iumj.1984.33.33025.  Google Scholar

[2]

Z. Lei, F. H. Lin and Y. Zhou, Private, communications., ().   Google Scholar

[3]

G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the $3$D Navier-Stokes equations,, Comm. Math. Phys., 159 (1994), 329.  doi: 10.1007/BF02102642.  Google Scholar

[4]

M. E. Schonbek, T. P. Schonbek and Endre Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations,, Math. Ann., 304 (1996), 717.  doi: 10.1007/BF01446316.  Google Scholar

show all references

References:
[1]

C. Foias and J.-C. Saut, Asymptotic behavior, as $t \to \infty$, of solutions of Navier-Stokes equations and nonlinear spectral manifolds,, Indiana Univ. Math. J., 33 (1984), 459.  doi: 10.1512/iumj.1984.33.33025.  Google Scholar

[2]

Z. Lei, F. H. Lin and Y. Zhou, Private, communications., ().   Google Scholar

[3]

G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the $3$D Navier-Stokes equations,, Comm. Math. Phys., 159 (1994), 329.  doi: 10.1007/BF02102642.  Google Scholar

[4]

M. E. Schonbek, T. P. Schonbek and Endre Süli, Large-time behaviour of solutions to the magnetohydrodynamics equations,, Math. Ann., 304 (1996), 717.  doi: 10.1007/BF01446316.  Google Scholar

[1]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[2]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[3]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[4]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[5]

Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122

[6]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[7]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[8]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[9]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[10]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[11]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[12]

Tao Wang, Huijiang Zhao, Qingyang Zou. One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinetic & Related Models, 2013, 6 (3) : 649-670. doi: 10.3934/krm.2013.6.649

[13]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[14]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[15]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[16]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[17]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[18]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[19]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

[20]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]