Citation: |
[1] |
M. Abramowitz and I. A. Stegun (ed.), "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,'' Dover, New York, 1965. |
[2] |
A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu, Comparisons between the BBM-equation and a Boussinesq system, Adv. Differential Equations, 11 (2006), 121-166. |
[3] |
B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-wavesand asymptotics, Invent. Math, 171 (2008), 485-541.doi: 10.1007/s00222-007-0088-4. |
[4] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear, dispersive media, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.doi: 10.1098/rsta.1972.0032. |
[5] |
J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers innon-linear dispersive systems, Proc. Cambridge Philos. Soc., 73 (1973), 391-405.doi: 10.1017/S0305004100076945. |
[6] |
J. L. Bona and M. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves, Phys. D, 116 (1998), 191-224.doi: 10.1016/S0167-2789(97)00249-2. |
[7] |
J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.doi: 10.1007/s00332-002-0466-4. |
[8] |
J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory, Nonlinearity, 17 (2004), 925-952.doi: 10.1088/0951-7715/17/3/010. |
[9] |
J. L. Bona, T. Colin and D. Lannes, Long wave approximation for water waves, Arch. Ration. Mech. Anal., 178 (2005), 373-410.doi: 10.1007/s00205-005-0378-1. |
[10] |
J. L. Bona and V. A. Dougalis, An initial and boundary value problem for amodel equation for the propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.doi: 10.1016/0022-247X(80)90098-0. |
[11] |
J. L. Bona and H. Kalisch, Models for internal waves in deep water, Discrete Contin. Dynam. Systems, Series B, 6 (2000), 1-20. |
[12] |
J. L. Bona, S. V. Rajopadhye and M. E. Schonbek, Models for propagation of bores. I. Two dimensional theory, Differential Integral Equations, 7 (1994), 699-734. |
[13] |
J. L. Bona, S. M. Sun and B. Y. Zhang, Conditional and unconditional well-posedness for nonlinear evolution equations, Adv. Differential Equations, 9 (2004), 241-265. |
[14] |
J. L. Bona and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Systems, Series A, 23 (2009), 1241-1252. |
[15] |
V. A. Dougalis, D. E. Mitsotakis and J.-C. Saut, On some Boussinesq systems in two space dimensions: theory and numerical analysis, M2AN Math. Model. Numer. Anal., 41 (2007), 825-854.doi: 10.1051/m2an:2007043. |
[16] |
V. A. Dougalis, D. E. Mitsotakis and J.-C. Saut, On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain, Discrete Contin. Dynam. Systems, Series A, 23 (2009), 1191-1204. |
[17] |
I. S. Gradshteyn and I. M. Ryzhik, "Table of Integrals, Series, and Products,'' $7^{th}$ edition (prepared by Yu. V. Geronimus and M. Yu. Tseytlin, transl. ed. A. Jeffrey and D. Zwillinger), Elsevier/Academic Press, Amsterdam, 2007. |
[18] |
B. B. Kadomtsev and V. I. Petviashvili, Stability of solitary waves in weakly dispersing media, Doklady Akademii Nauk SSSR, 192 (1970), 753-756. (Russian) (transl. Soviet Phys. Dokl., 15 (1970), 539-541). |
[19] |
T. Kato, On Nonlinear Schr\"odinger Equations. II. $H^s$ - Solutions and unconditional well-posedness, J. Anal. Math., 67 (1995), 281-306.doi: 10.1007/BF02787794. |
[20] |
D. Lannes and J.-C. Saut, Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity, 19 (2006), 2853-2875.doi: 10.1088/0951-7715/19/12/007. |
[21] |
M. Ming, J.-C. Saut and P. Zhang, Long time existence of solutions to Boussinesq systems, Submitted. |
[22] |
L. Molinet, J.-C. Saut and N. Tzvetkov, Remarks on the mass constraint for KP-type equations, SIAM J. Math. Anal., 39 (2007), 627-641.doi: 0.1137/060654256. |
[23] |
D. H. Peregrine, Calculation of the development of an undular bore, J. Fluid Mechanics, 25 (1966), 321-330.doi: 10.1017/S0022112066001678. |
[24] |
S. V. Rajopadhye, Propagation of bores. II. Three-dimensional theory, Nonlinear Anal., 27 (1996), 963-986.doi: 10.1016/0362-546X(94)00358-O. |
[25] |
S. V. Rajopadhye, Some models for the propagation of bores, J. Differential Equations, 217 (2005), 179-203. |
[26] |
J.-C. Saut and L. Xu, The Cauchy problem on large time for surface waves Boussinesq systems, J. Math. Pures Appl., 97 (2012), 635-662. |