Citation: |
[1] |
J. P. Albert, Concentration compactness and the stability of solitary wave solutions to nonlocal equations, Contemp. Math, 221 (1999), 1-29.doi: 10.1090/conm/221/03116. |
[2] |
J. P. Albert, Positivity properties and stability of solitary-wave solutions of model equations for long waves, Comm. Partial Differential Equations, 17 (1992), 1-22.doi: 10.1080/03605309208820831. |
[3] |
J. P. Albert, Positivity properties and uniqueness of solitary wave solutions of the intermediate long-wave equation. Evolution equations, Lecture Notes in Pure and Appl. Math, Dekker, New York, 168 (1995), 11-20. |
[4] |
J. P. Albert and J. L. Bona, Total positivity and the stability of internal waves in stratified fluids of finite depth, IMA J. Appl. Math, 46 (1991), 1-19.doi: 10.1093/imamat/46.1-2.1. |
[5] |
J. P. Albert, J. L. Bona and J. M. Restrepo, Solitary-wave solutions of the Benjamin equation, SIAM J. Appl. Math, 59 (1999), 2139-2161.doi: 10.1137/S0036139997321682. |
[6] |
J. P. Albert, J. L. Bona and J. C. Saut, Model equations for waves in startified fluids, Proc. Royal Soc. Edinburgh Sec. A, 453 (1997), 1233-1260. |
[7] |
C. J. Amick and J. F. Toland, Uniqueness of Benjamin's solitary wave solution of the Benjamin-Ono, IMA J. Appl. Math, 46 (1991), 21-28.doi: 10.1093/imamat/46.1-2.21. |
[8] |
J. Angulo, On the instability of solitary waves solutions of the generalized Benjamin equation, Adv. Differential Equations, 8 (2003), 55-82. |
[9] |
J. Angulo, On the instability of solitary wave solutions for fifith-order water wave models, Elec. J. Diff. Equations, 2003 (2003), 1-18. |
[10] |
E. S. Benilov, On the surface waves in a shallow channel with an uneven bottom, Stud. Appl. Math., 87 (1992), 1-4. |
[11] |
T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.doi: 10.1017/S002211206700103X. |
[12] |
J. L. Bona and Y. A. Li, Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), 377-430. |
[13] |
R. M. Chen, V. M. Hur and Y. Liu, Solitary waves of the rotation-modified Kadomtsev-Petviashvili equation, Nonlinearity, 21 (2008), 2949-979.doi: 10.1088/0951-7715/21/12/012. |
[14] |
M. Chen, Y. Liu and P. Zhang, Local regularity and decay estimates of solitary waves for the rotation-modified Kadomtsev-Petviashvili equation, Trans. Amer. Math. Soc., 364 (2012), 3395-3425.doi: 10.1090/S0002-9947-2012-05383-9. |
[15] |
A. Esfahani, Decay properties of the traveling waves of the rotation-generalized Kadomtsev-Petviashvili equation, J. Phys. A: Math. Theor., 43 (2010), 395201.doi: 10.1088/1751-8113/43/39/395201. |
[16] |
V. N. Galkin and Y. A. Stepanyants, On the existence of stationary solitary waves in a Rotating fluid, J. Appl. Maths. Mechs., 55 (1991), 1051-1055.doi: 10.1016/0021-8928(91)90148-N. |
[17] |
O. A. Gilman, R. Grimshaw and Y. A. Stepanyants, Approximate and numerical solutions of the stationary Ostrovsky equation, Stud. Appl. Math, 95 (1995), 115-126. |
[18] |
J. Gonçcalves Ribeiro, Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field, Ann. Inst. H. Poincaré, Phys. Théor., 54 (1991), 403-433. |
[19] |
R. Grimshaw, Evolution equations for weakly nonlinear long internal waves in a rotating fluid, Stud. Appl. Math, 73 (1985), 1-33. |
[20] |
S. Levandosky, A stability analysis of fifth-order water wave models, Phys. D, 125 (1999), 222-240.doi: 10.1016/S0167-2789(98)00245-0. |
[21] |
S. Levandosky, Stability and instability of fourth order solitary waves, J. Dynam. Differential Equations, 10 (1998), 151-188.doi: 10.1023/A:1022644629950. |
[22] |
S. Levandosky and Y. Liu, Stability of solitary waves of a generalized Ostrovsky equation, SIAM J. Math. Anal., 38 (2006), 985-1011.doi: 10.1137/050638722. |
[23] |
S. P. Levandosky and Y. Liu, Stability and weak rotation limit of solitary waves of the Ostrovsky equation, Discrete Contin. Dynam. Systems-B, 7 (2007), 793-806. |
[24] |
F. Linares and A. Milanes, A note on solutions to a model for long internal waves in a rotating fluid, Mat. Contemp., 27 (2004), 101-115. |
[25] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I., Ann. Inst. H. Poincaré, Anal. Non linéare, 1 (1984), 109-145. |
[26] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II., Ann. Inst. H. Poincaré, Anal. Non linéare, 4 (1984), 223-283. |
[27] |
Y. Liu, On the stability of solitary waves for the Ostrovsky equation, Quart. Appl. Math, 65 (2007), 571-589. |
[28] |
Y. Liu and M. Ohta, Stability of solitary waves for the Ostrovsky equation, Proc. Amer. Math. Soc., 136 (2008), 511-517.doi: 10.1090/S0002-9939-07-09191-5. |
[29] |
Y. Liu and V. Varlamov, Stability of solitary waves and weak rotation limit for the Ostrovsky equation, J. Differential Equations, 203 (2004), 159-183.doi: 10.1016/j.jde.2004.03.026. |
[30] |
Y. Liu and M. M. Tom, Blow-up and instability of a regularized long-wave-KP equation, Differential Integral Equations, 19 (2003), 1131-1152. |
[31] |
L. A. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologiya, 18 (1978), 181-191. |
[32] |
L. A. Ostrovsky and Y. A. Stepanyants, "Nonlinear Surface and Internal Waves in Rotating Fluids," Research Reports in Physics, Nonlinear wave 3, Springer, Berlin, Heidelberg, 1990. |
[33] |
D. E. Pelinovsky and Y. A. Stepanyants, Convergence of petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J. Numer. Anal., 42 (2004), 1110-1127.doi: 10.1137/S0036142902414232. |
[34] |
L. G. Redekopp, Nonlinear waves in geophysics: Long internal waves, Lectures in Appl. Math, 20 (1983), 59-78. |