\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Slow motion for equal depth multiple-well gradient systems: The degenerate case

Abstract / Introduction Related Papers Cited by
  • We extend the study [1] of gradient systems with equal depth multiple-well potentials to the case when some of the wells are degenerate, in the sense that the Hessian is non positive at those wells. The exponentially small speed, in terms of distances between fronts, typical of non degenerate potentials is replaced by an algebraic upper bound, whose degree depends on the degeneracy of the wells.
    Mathematics Subject Classification: 35K57, 35B25, 35B36.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Bethuel, G. Orlandi and D. Smets, Slow motion for gradient systems with equal depth multiple-well potentials, J. Differential Equations, 250 (2011), 53-94.

    [2]

    L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997.doi: 10.1002/cpa.3160430804.

    [3]

    J. Carr and R. L. Pego, Metastable patterns in solutions of u t2 $u_{x x}$ - f(u) Comm. Pure Appl. Math., 42 (1989), 523-576.doi: 10.1002/cpa.3160420502.

    [4]

    X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differential Equations, 206 (2004), 399-437.doi: 10.1016/j.jde.2004.05.017.

    [5]

    F. Otto and M. G. Reznikoff, Slow motion of gradient flows, J. Differential Equations, 237 (2007), 372-420.doi: 10.1016/j.jde.2007.03.007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return