-
Previous Article
Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions
- DCDS Home
- This Issue
-
Next Article
Multiple critical points for a class of periodic lower semicontinuous functionals
Slow motion for equal depth multiple-well gradient systems: The degenerate case
1. | UPMC-Paris6, UMR 7598 LJLL, Paris, F-75005, France, France |
References:
[1] |
F. Bethuel, G. Orlandi and D. Smets, Slow motion for gradient systems with equal depth multiple-well potentials, J. Differential Equations, 250 (2011), 53-94. |
[2] |
L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997.
doi: 10.1002/cpa.3160430804. |
[3] |
J. Carr and R. L. Pego, Metastable patterns in solutions of u t=ε2 $u_{x x}$ - f(u) Comm. Pure Appl. Math., 42 (1989), 523-576.
doi: 10.1002/cpa.3160420502. |
[4] |
X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differential Equations, 206 (2004), 399-437.
doi: 10.1016/j.jde.2004.05.017. |
[5] |
F. Otto and M. G. Reznikoff, Slow motion of gradient flows, J. Differential Equations, 237 (2007), 372-420.
doi: 10.1016/j.jde.2007.03.007. |
show all references
References:
[1] |
F. Bethuel, G. Orlandi and D. Smets, Slow motion for gradient systems with equal depth multiple-well potentials, J. Differential Equations, 250 (2011), 53-94. |
[2] |
L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997.
doi: 10.1002/cpa.3160430804. |
[3] |
J. Carr and R. L. Pego, Metastable patterns in solutions of u t=ε2 $u_{x x}$ - f(u) Comm. Pure Appl. Math., 42 (1989), 523-576.
doi: 10.1002/cpa.3160420502. |
[4] |
X. Chen, Generation, propagation, and annihilation of metastable patterns, J. Differential Equations, 206 (2004), 399-437.
doi: 10.1016/j.jde.2004.05.017. |
[5] |
F. Otto and M. G. Reznikoff, Slow motion of gradient flows, J. Differential Equations, 237 (2007), 372-420.
doi: 10.1016/j.jde.2007.03.007. |
[1] |
Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure and Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715 |
[2] |
Mohar Guha, Keith Promislow. Front propagation in a noisy, nonsmooth, excitable medium. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 617-638. doi: 10.3934/dcds.2009.23.617 |
[3] |
Yana Nec, Vladimir A Volpert, Alexander A Nepomnyashchy. Front propagation problems with sub-diffusion. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 827-846. doi: 10.3934/dcds.2010.27.827 |
[4] |
Samir Salem. A gradient flow approach of propagation of chaos. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5729-5754. doi: 10.3934/dcds.2020243 |
[5] |
C.B. Muratov. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 867-892. doi: 10.3934/dcdsb.2004.4.867 |
[6] |
Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411 |
[7] |
Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235 |
[8] |
Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic and Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255 |
[9] |
Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52. |
[10] |
Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769 |
[11] |
Mikhail Kuzmin, Stefano Ruggerini. Front propagation in diffusion-aggregation models with bi-stable reaction. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 819-833. doi: 10.3934/dcdsb.2011.16.819 |
[12] |
Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197 |
[13] |
Margarita Arias, Juan Campos, Cristina Marcelli. Fastness and continuous dependence in front propagation in Fisher-KPP equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 11-30. doi: 10.3934/dcdsb.2009.11.11 |
[14] |
Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083 |
[15] |
Mia Jukić, Hermen Jan Hupkes. Curvature-driven front propagation through planar lattices in oblique directions. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2189-2251. doi: 10.3934/cpaa.2022055 |
[16] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[17] |
Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151 |
[18] |
Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125 |
[19] |
Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168 |
[20] |
Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]