January  2013, 33(1): 7-26. doi: 10.3934/dcds.2013.33.7

Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential

1. 

Mathematisches Institut, University of Giessen, Arndtstr. 2 35392 Giessen, Germany

2. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

Received  August 2011 Revised  December 2011 Published  September 2012

We are concerned with the existence of single- and multi-bump solutions of the equation $-\Delta u+(\lambda a(x)+a_0(x))u=|u|^{p-2}u$, $x\in{\mathbb R}^N$; here $p>2$, and $p<\frac{2N}{N-2}$ if $N\geq 3$. We require that $a\geq 0$ is in $L^\infty_{loc}({\mathbb R}^N)$ and has a bounded potential well $\Omega$, i.e. $a(x)=0$ for $x\in\Omega$ and $a(x)>0$ for $x\in{\mathbb R}^N$\$\bar{\Omega}$. Unlike most other papers on this problem we allow that $a_0\in L^\infty({\mathbb R}^N)$ changes sign. Using variational methods we prove the existence of multibump solutions $u_\lambda$ which localize, as $\lambda\to\infty$, near prescribed isolated open subsets $\Omega_1,\dots,\Omega_k\subset\Omega$. The operator $L_0:=-\Delta+a_0$ may have negative eigenvalues in $\Omega_j$, each bump of $u_\lambda$ may be sign-changing.
Citation: Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7
References:
[1]

T. Bartsch and M. Parnet, Nonlinear Schrödinger equations near an infinite potential well,, , ().   Google Scholar

[2]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear ellipticequation $\mathbbR^N$,, Comm. Part. Diff. Eq., 20 (1995), 1725.  doi: 10.1080/03605309508821149.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation,, Z. angew. Math. Phys., 51 (2000), 366.   Google Scholar

[4]

T. Bartsch, A. Pankov and Z. Q.Wang, Nonlinear Schrödinger equations with steep potential well,, Commun. Contemp. Math., 3 (2001), 549.  doi: 10.1142/S0219199701000494.  Google Scholar

[5]

Y. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödingerequation,, Manuscripta Math., 112 (2003), 109.  doi: 10.1007/s00229-003-0397-x.  Google Scholar

[6]

Y. Ding and A. Szulkin, Existence and number of solutions for a class of semilinearSchrödinger equation,, Progr. Nonlin. Diff. Equ. Appl., 66 (2006), 221.  doi: 10.1007/3-7643-7401-2_15.  Google Scholar

[7]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[8]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photoniccrystals,, Milan J. Math., 73 (2005), 563.  doi: 10.1007/s00032-005-0047-8.  Google Scholar

[9]

M. Reed and B. Simon, Schrödinger semigroups,, Bull. Amer. Math. Soc. (N.S), 7 (1982), 447.   Google Scholar

[10]

Y. Sato and K. Tanaka, Sign-changingmulti-bump solutions for nonlinear Schrödinger equations withsteep potential wells,, Trans. Amer. Math. Soc., 361 (2009), 6205.  doi: 10.1090/S0002-9947-09-04565-6.  Google Scholar

[11]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems,, J. Funct. Anal., 257 (2009), 3802.  doi: 10.1016/j.jfa.2009.09.013.  Google Scholar

[12]

Z. P. Wang and H. S. Zhou, Positive solutions for nonlinear Schrödinger equations withdeepening potential well,, J. Europ. Math. Soc., 11 (2009), 545.  doi: 10.4171/JEMS/160.  Google Scholar

show all references

References:
[1]

T. Bartsch and M. Parnet, Nonlinear Schrödinger equations near an infinite potential well,, , ().   Google Scholar

[2]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear ellipticequation $\mathbbR^N$,, Comm. Part. Diff. Eq., 20 (1995), 1725.  doi: 10.1080/03605309508821149.  Google Scholar

[3]

T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation,, Z. angew. Math. Phys., 51 (2000), 366.   Google Scholar

[4]

T. Bartsch, A. Pankov and Z. Q.Wang, Nonlinear Schrödinger equations with steep potential well,, Commun. Contemp. Math., 3 (2001), 549.  doi: 10.1142/S0219199701000494.  Google Scholar

[5]

Y. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödingerequation,, Manuscripta Math., 112 (2003), 109.  doi: 10.1007/s00229-003-0397-x.  Google Scholar

[6]

Y. Ding and A. Szulkin, Existence and number of solutions for a class of semilinearSchrödinger equation,, Progr. Nonlin. Diff. Equ. Appl., 66 (2006), 221.  doi: 10.1007/3-7643-7401-2_15.  Google Scholar

[7]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[8]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photoniccrystals,, Milan J. Math., 73 (2005), 563.  doi: 10.1007/s00032-005-0047-8.  Google Scholar

[9]

M. Reed and B. Simon, Schrödinger semigroups,, Bull. Amer. Math. Soc. (N.S), 7 (1982), 447.   Google Scholar

[10]

Y. Sato and K. Tanaka, Sign-changingmulti-bump solutions for nonlinear Schrödinger equations withsteep potential wells,, Trans. Amer. Math. Soc., 361 (2009), 6205.  doi: 10.1090/S0002-9947-09-04565-6.  Google Scholar

[11]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems,, J. Funct. Anal., 257 (2009), 3802.  doi: 10.1016/j.jfa.2009.09.013.  Google Scholar

[12]

Z. P. Wang and H. S. Zhou, Positive solutions for nonlinear Schrödinger equations withdeepening potential well,, J. Europ. Math. Soc., 11 (2009), 545.  doi: 10.4171/JEMS/160.  Google Scholar

[1]

Yuxia Guo, Zhongwei Tang. Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3393-3415. doi: 10.3934/dcds.2015.35.3393

[2]

Weiming Liu, Lu Gan. Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2016, 15 (2) : 413-428. doi: 10.3934/cpaa.2016.15.413

[3]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[4]

Claudianor O. Alves, Olímpio H. Miyagaki, Sérgio H. M. Soares. Multi-bump solutions for a class of quasilinear equations on $R$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 829-844. doi: 10.3934/cpaa.2012.11.829

[5]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[6]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[7]

Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure & Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587

[8]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[9]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[10]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[11]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[12]

Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137

[13]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[14]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[15]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[16]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[17]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

[18]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[19]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[20]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]