-
Previous Article
Uniqueness of harmonic map heat flows and liquid crystal flows
- DCDS Home
- This Issue
-
Next Article
On transverse stability of random dynamical system
On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains
1. | Department of Mathematics, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea |
2. | Department of Mathematics, Pohang University of Science and Technology, Pohang, 790-784, South Korea |
3. | Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany |
References:
[1] |
C. Bardos and P. Degond, Global existence for the Vlasov-Poisson system in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118. |
[2] |
J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342-364.
doi: 10.1016/0022-0396(77)90049-3. |
[3] |
J. W. Connor, An analytic solution for the distribution of neutral particles in a Maxwellian plasma using the method of singular eigenfunctions, Plasma Physics, 19 (1977), 853-873.
doi: 10.1088/0032-1028/19/9/006. |
[4] |
J. W. Gadzuk, Theory of dielectric screening of an impurity at the surface of an electron gas, J. Phys. Chem. Solids, 30 (1969), 2307-2319.
doi: 10.1016/0022-3697(69)90157-7. |
[5] |
R. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. |
[6] |
Y. Guo, Singular solutions of Vlasov-Maxwell system on a half line, Arch. Ration. Mech. Anal., 131 (1995), 241-304.
doi: 10.1007/BF00382888. |
[7] |
Y. Guo, Regularity for the Vlasov equations in a half space, Indiana Univ. Math. J., 43 (1994), 255-320.
doi: 10.1512/iumj.1994.43.43013. |
[8] |
J. H. Hopps and W. L. Waldron, Surface modes in electron plasmas, Physical Review A, 15 (1977), 1721-1729.
doi: 10.1103/PhysRevA.15.1721. |
[9] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Parts I, Math. Methods Appl. Sci., 3 (1981), 229-248. |
[10] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Parts II, Math. Methods Appl. Sci., 4 (1982), 19-32. |
[11] |
H. J. Hwang, Regularity for the Vlasov-Poisson system in a convex domain, SIAM J. Math. Anal., 36 (2004), 121-171.
doi: 10.1137/S0036141003422278. |
[12] |
H. J. Hwang and J.J . L. Velázquez, On global existence for the Vlasov-Poisson system in a half space, J. Differential Equations, 247 (2009), 1915-1948.
doi: 10.1016/j.jde.2009.06.004. |
[13] |
H. J. Hwang and J. J. L. Velázquez, Global existence for the Vlasov-Poisson system in bounded domains, Arch. Ration. Mech. Anal., 195 (2010), 763-796.
doi: 10.1007/s00205-009-0239-4. |
[14] |
S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194. |
[15] |
P. L. Lions and B. Perthame, Propagation of moments and regularity of solutions for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.
doi: 10.1007/BF01232273. |
[16] |
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 95 (1992), 281-303.
doi: 10.1016/0022-0396(92)90033-J. |
[17] |
K. U. Riemann, The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys., 24 (1991), 492-518.
doi: 10.1088/0022-3727/24/4/001. |
[18] |
A. Shivarova and I. Zhelyazkov, Surface waves in a homogeneous plasma sharply bounded by a dielectric, Plasma Physics, 20 (1978), 1049-1073.
doi: 10.1088/0032-1028/20/10/007. |
[19] |
D. J. Struik, "Lectures on Classical Differential Geometry," Dover Publications, Inc., New York, 1988. |
[20] |
S. Ukai and T. Okabe, On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka J. Math., 15 (1978), 245-261. |
show all references
References:
[1] |
C. Bardos and P. Degond, Global existence for the Vlasov-Poisson system in 3 space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118. |
[2] |
J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342-364.
doi: 10.1016/0022-0396(77)90049-3. |
[3] |
J. W. Connor, An analytic solution for the distribution of neutral particles in a Maxwellian plasma using the method of singular eigenfunctions, Plasma Physics, 19 (1977), 853-873.
doi: 10.1088/0032-1028/19/9/006. |
[4] |
J. W. Gadzuk, Theory of dielectric screening of an impurity at the surface of an electron gas, J. Phys. Chem. Solids, 30 (1969), 2307-2319.
doi: 10.1016/0022-3697(69)90157-7. |
[5] |
R. Glassey, "The Cauchy Problem in Kinetic Theory," Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. |
[6] |
Y. Guo, Singular solutions of Vlasov-Maxwell system on a half line, Arch. Ration. Mech. Anal., 131 (1995), 241-304.
doi: 10.1007/BF00382888. |
[7] |
Y. Guo, Regularity for the Vlasov equations in a half space, Indiana Univ. Math. J., 43 (1994), 255-320.
doi: 10.1512/iumj.1994.43.43013. |
[8] |
J. H. Hopps and W. L. Waldron, Surface modes in electron plasmas, Physical Review A, 15 (1977), 1721-1729.
doi: 10.1103/PhysRevA.15.1721. |
[9] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Parts I, Math. Methods Appl. Sci., 3 (1981), 229-248. |
[10] |
E. Horst, On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, Parts II, Math. Methods Appl. Sci., 4 (1982), 19-32. |
[11] |
H. J. Hwang, Regularity for the Vlasov-Poisson system in a convex domain, SIAM J. Math. Anal., 36 (2004), 121-171.
doi: 10.1137/S0036141003422278. |
[12] |
H. J. Hwang and J.J . L. Velázquez, On global existence for the Vlasov-Poisson system in a half space, J. Differential Equations, 247 (2009), 1915-1948.
doi: 10.1016/j.jde.2009.06.004. |
[13] |
H. J. Hwang and J. J. L. Velázquez, Global existence for the Vlasov-Poisson system in bounded domains, Arch. Ration. Mech. Anal., 195 (2010), 763-796.
doi: 10.1007/s00205-009-0239-4. |
[14] |
S. V. Iordanskii, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklov., 60 (1961), 181-194. |
[15] |
P. L. Lions and B. Perthame, Propagation of moments and regularity of solutions for the 3-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.
doi: 10.1007/BF01232273. |
[16] |
K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, 95 (1992), 281-303.
doi: 10.1016/0022-0396(92)90033-J. |
[17] |
K. U. Riemann, The Bohm criterion and sheath formation, J. Phys. D: Appl. Phys., 24 (1991), 492-518.
doi: 10.1088/0022-3727/24/4/001. |
[18] |
A. Shivarova and I. Zhelyazkov, Surface waves in a homogeneous plasma sharply bounded by a dielectric, Plasma Physics, 20 (1978), 1049-1073.
doi: 10.1088/0032-1028/20/10/007. |
[19] |
D. J. Struik, "Lectures on Classical Differential Geometry," Dover Publications, Inc., New York, 1988. |
[20] |
S. Ukai and T. Okabe, On classical solutions in the large in time of two-dimensional Vlasov's equation, Osaka J. Math., 15 (1978), 245-261. |
[1] |
Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129 |
[2] |
Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046 |
[3] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic and Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[4] |
Megan Griffin-Pickering, Mikaela Iacobelli. Global strong solutions in $ {\mathbb{R}}^3 $ for ionic Vlasov-Poisson systems. Kinetic and Related Models, 2021, 14 (4) : 571-597. doi: 10.3934/krm.2021016 |
[5] |
Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051 |
[6] |
Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955 |
[7] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729 |
[8] |
Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015 |
[9] |
Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050 |
[10] |
Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039 |
[11] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[12] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004 |
[13] |
Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021 |
[14] |
Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 |
[15] |
Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032 |
[16] |
Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049 |
[17] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic and Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011 |
[18] |
Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic and Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005 |
[19] |
Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283 |
[20] |
Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic and Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]