February  2013, 33(2): 757-788. doi: 10.3934/dcds.2013.33.757

Globally weak solutions to the flow of compressible liquid crystals system

1. 

Institute of Mathematics, Fudan University, Shanghai, China

2. 

Mathematics Department, UC at Santa Cruz, United States

Received  July 2011 Revised  October 2011 Published  September 2012

We study a simplified system for the compressible fluid of Nematic Liquid Crystals in a bounded domain in three Euclidean space and prove the global existence of the finite energy weak solutions.
Citation: Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757
References:
[1]

M. C. Calderer and C. Liu, Liquid crystal flow: Dynamic and staic configurations,, SIAM J. Appl. Math., 60 (2000), 1925.   Google Scholar

[2]

D. Coutand and S. Shkoller, Well posedness of the full Ericksen-Leslye model of nematic liquid crystals,, Note C. R. A. S, 333 (2001), 919.   Google Scholar

[3]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[4]

J. L. Ericksen and D. Kinderlehrer, "Theory and Applications of Liquid Crystals,", IMA Vol. 5, (1986).   Google Scholar

[5]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[6]

D. Forster, T. Lubensky, P. Martin, J. Swift and P. Pershan, Hydrodynamics of liquid crystals,, Phys. Rev. Lett., 26 (1971), 1016.  doi: 10.1103/PhysRevLett.26.1016.  Google Scholar

[7]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.   Google Scholar

[8]

de Gennes, "The Physics of Liquid Crystals,", Claredon Press, (1993).   Google Scholar

[9]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data,, J. Diff. equns, 120 (1995), 215.  doi: 10.1006/jdeq.1995.1111.  Google Scholar

[10]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Arch. Rational Mech. Anal., 132 (1995), 1.   Google Scholar

[11]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.   Google Scholar

[12]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Gordon and Breach, (1969).   Google Scholar

[13]

O. A. Ladyzhenskaya, N. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations Of Parabolic Type,", Transl. Math. Monographs, 23 (1968).   Google Scholar

[14]

F. M. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357.  doi: 10.1093/qjmam/19.3.357.  Google Scholar

[15]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[16]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena,, Comm. Pure. Appl. Math., 42 (1989), 789.   Google Scholar

[17]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid Crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[18]

F. H. Lin and C. Liu, Static ang dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.   Google Scholar

[19]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie System,, Arch. Rational Mech. Aanl., 154 (2000), 135.   Google Scholar

[20]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Discrete and Continuous Dynamic Systems, 2 (1996), 1.   Google Scholar

[21]

J. L. Lions, "Quelques Méthodes Derésolution des Problèms aux Limites Nonlinéaires,", Dunod, (1960).   Google Scholar

[22]

P. L. Lions, "Mathematical Topics in Fluid Dynamics,", Vol.1. Compressible models. Oxford Science Publication, (1998).   Google Scholar

[23]

P. L. Lions, "Mathematical Topics in Fluid Dynamics,", Vol.2. Compressible models. Oxford Science Publication, (1998).   Google Scholar

[24]

X. Liu and Z. Zhang, Global existence of weak solutions for the incompressible liquid crystals,, Chinese Anna. Math., 30 (2009), 1.   Google Scholar

[25]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995).   Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible and heat-conductives fluids,, Proc. Japan Acad., 55 (1979), 337.  doi: 10.3792/pjaa.55.337.  Google Scholar

[27]

J. Phillips, "Liquid Crystals,", mcgill. ca, (2005).   Google Scholar

[28]

S. V. Pasechnik, V. G. Chigrinov, D. V. Shmeliova, "Liquid Crystals: Viscous and Elastic Properties,", Wiley-VCH, (2009).   Google Scholar

[29]

D. Serre and J.L. Lions(Rapporteur), Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible,, C. R. Acad. Sci. Paris, 303 (1986), 639.   Google Scholar

[30]

M. J. Stephen, Hydrodynamics of liquid crystals,, Phys. Rev. A, 2 (1970), 1558.   Google Scholar

[31]

R. Temam, "Navier-Stokes Equations,", rev. ed., (1977).   Google Scholar

[32]

W. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction,", Liquid crystals bookseries, (2004).   Google Scholar

[33]

Y. Z. Xie, "The Physics of Liquid Crystals,", Scientific Press, (1988).   Google Scholar

[34]

D. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals,, , ().   Google Scholar

show all references

References:
[1]

M. C. Calderer and C. Liu, Liquid crystal flow: Dynamic and staic configurations,, SIAM J. Appl. Math., 60 (2000), 1925.   Google Scholar

[2]

D. Coutand and S. Shkoller, Well posedness of the full Ericksen-Leslye model of nematic liquid crystals,, Note C. R. A. S, 333 (2001), 919.   Google Scholar

[3]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371.   Google Scholar

[4]

J. L. Ericksen and D. Kinderlehrer, "Theory and Applications of Liquid Crystals,", IMA Vol. 5, (1986).   Google Scholar

[5]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[6]

D. Forster, T. Lubensky, P. Martin, J. Swift and P. Pershan, Hydrodynamics of liquid crystals,, Phys. Rev. Lett., 26 (1971), 1016.  doi: 10.1103/PhysRevLett.26.1016.  Google Scholar

[7]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.   Google Scholar

[8]

de Gennes, "The Physics of Liquid Crystals,", Claredon Press, (1993).   Google Scholar

[9]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data,, J. Diff. equns, 120 (1995), 215.  doi: 10.1006/jdeq.1995.1111.  Google Scholar

[10]

D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Arch. Rational Mech. Anal., 132 (1995), 1.   Google Scholar

[11]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.   Google Scholar

[12]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Gordon and Breach, (1969).   Google Scholar

[13]

O. A. Ladyzhenskaya, N. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations Of Parabolic Type,", Transl. Math. Monographs, 23 (1968).   Google Scholar

[14]

F. M. Leslie, Some constitutive equations for anisotropic fluids,, Quart. J. Mech. Appl. Math., 19 (1966), 357.  doi: 10.1093/qjmam/19.3.357.  Google Scholar

[15]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[16]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena,, Comm. Pure. Appl. Math., 42 (1989), 789.   Google Scholar

[17]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid Crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[18]

F. H. Lin and C. Liu, Static ang dynamic theories of liquid crystals,, Journal of Partial Differential Equations, 14 (2001), 289.   Google Scholar

[19]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie System,, Arch. Rational Mech. Aanl., 154 (2000), 135.   Google Scholar

[20]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Discrete and Continuous Dynamic Systems, 2 (1996), 1.   Google Scholar

[21]

J. L. Lions, "Quelques Méthodes Derésolution des Problèms aux Limites Nonlinéaires,", Dunod, (1960).   Google Scholar

[22]

P. L. Lions, "Mathematical Topics in Fluid Dynamics,", Vol.1. Compressible models. Oxford Science Publication, (1998).   Google Scholar

[23]

P. L. Lions, "Mathematical Topics in Fluid Dynamics,", Vol.2. Compressible models. Oxford Science Publication, (1998).   Google Scholar

[24]

X. Liu and Z. Zhang, Global existence of weak solutions for the incompressible liquid crystals,, Chinese Anna. Math., 30 (2009), 1.   Google Scholar

[25]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995).   Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible and heat-conductives fluids,, Proc. Japan Acad., 55 (1979), 337.  doi: 10.3792/pjaa.55.337.  Google Scholar

[27]

J. Phillips, "Liquid Crystals,", mcgill. ca, (2005).   Google Scholar

[28]

S. V. Pasechnik, V. G. Chigrinov, D. V. Shmeliova, "Liquid Crystals: Viscous and Elastic Properties,", Wiley-VCH, (2009).   Google Scholar

[29]

D. Serre and J.L. Lions(Rapporteur), Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible,, C. R. Acad. Sci. Paris, 303 (1986), 639.   Google Scholar

[30]

M. J. Stephen, Hydrodynamics of liquid crystals,, Phys. Rev. A, 2 (1970), 1558.   Google Scholar

[31]

R. Temam, "Navier-Stokes Equations,", rev. ed., (1977).   Google Scholar

[32]

W. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction,", Liquid crystals bookseries, (2004).   Google Scholar

[33]

Y. Z. Xie, "The Physics of Liquid Crystals,", Scientific Press, (1988).   Google Scholar

[34]

D. Wang and C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystals,, , ().   Google Scholar

[1]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[2]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[3]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[7]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[8]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[9]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[10]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[11]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[14]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[15]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[16]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[17]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[18]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[19]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[20]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]