• Previous Article
    Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations
  • DCDS Home
  • This Issue
  • Next Article
    Energy identity for a class of approximate biharmonic maps into sphere in dimension four
February  2013, 33(2): 879-884. doi: 10.3934/dcds.2013.33.879

A note on a sifting-type lemma

1. 

School of Mathematics and Systems Science, Beihang University, Beijing 100191, China

2. 

Department of Mathematics, Nanjing University, Nanjing, 210093

Received  August 2011 Revised  December 2011 Published  September 2012

In this note, we improve a combinatorial sifting-type lemma obtained in [11].More precisely, we sift out a continuous infinite "$(\xi_1,\xi_2)$-Liao string" sequence for any real sequence $\{a_i\}_1^\infty$ with $\limsup_{n\to\infty}{n}^{-1}\sum_{i=1}^na_i=\xi\in(\xi_1,\xi_2)$.
Citation: Xiao Wen, Xiongping Dai. A note on a sifting-type lemma. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 879-884. doi: 10.3934/dcds.2013.33.879
References:
[1]

J. Alves and V. Araújo, Hyperbolic times: frequency versus integrability,, Ergod. Th. & Dynam. Sys., 24 (2004), 329.  doi: 10.1017/S0143385703000555.  Google Scholar

[2]

S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations,, Advances in Mathematics, 226 (2011), 673.  doi: 10.1016/j.aim.2010.07.013.  Google Scholar

[3]

S. Gan, A generalized shadowing lemma,, Discrete Cont. Dynam. Syst., 8 (2002), 627.   Google Scholar

[4]

S. Gan and L. Wen, Nonsingular star flows satisfy axiom A and the no-cycle condition,, Invent. Math., 164 (2006), 279.  doi: 10.1007/s00222-005-0479-3.  Google Scholar

[5]

S. Liao, An existence theorem for periodic orbits,, (Chinese) Beijing Daxue Xuebao, 1 (1979), 1.   Google Scholar

[6]

S. Liao, On the stability conjecture,, Chinese Annals of Math., 1 (1980), 9.   Google Scholar

[7]

V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268.   Google Scholar

[8]

R. Potrie and M. Sambarino, Codimension one generic homoclinic classes with interior,, Bull. Braz. Math. Soc., 41 (2010), 125.  doi: 10.1007/s00574-010-0006-z.  Google Scholar

[9]

L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles,, Bull. Braz. Math. Soc., 35 (2004), 419.   Google Scholar

[10]

L. Wen, The selecting lemma of Liao,, Discrete Cont. Dynam. Syst., 20 (2008), 159.  doi: 10.3934/dcds.2008.20.159.  Google Scholar

[11]

X. Wen, S. Gan and L. Wen, $C^1$-stably shadowable chain components are hyperbolic,, J. Differential Equations, 246 (2009), 340.  doi: 10.1016/j.jde.2008.03.032.  Google Scholar

[12]

P. Zhang, A diffeomorphism with global dominated splitting can not be minimal,, Proc. Amer. Math. Soc., 140 (2012), 589.   Google Scholar

show all references

References:
[1]

J. Alves and V. Araújo, Hyperbolic times: frequency versus integrability,, Ergod. Th. & Dynam. Sys., 24 (2004), 329.  doi: 10.1017/S0143385703000555.  Google Scholar

[2]

S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations,, Advances in Mathematics, 226 (2011), 673.  doi: 10.1016/j.aim.2010.07.013.  Google Scholar

[3]

S. Gan, A generalized shadowing lemma,, Discrete Cont. Dynam. Syst., 8 (2002), 627.   Google Scholar

[4]

S. Gan and L. Wen, Nonsingular star flows satisfy axiom A and the no-cycle condition,, Invent. Math., 164 (2006), 279.  doi: 10.1007/s00222-005-0479-3.  Google Scholar

[5]

S. Liao, An existence theorem for periodic orbits,, (Chinese) Beijing Daxue Xuebao, 1 (1979), 1.   Google Scholar

[6]

S. Liao, On the stability conjecture,, Chinese Annals of Math., 1 (1980), 9.   Google Scholar

[7]

V. Pliss, On a conjecture of Smale,, Diff. Uravnenija, 8 (1972), 268.   Google Scholar

[8]

R. Potrie and M. Sambarino, Codimension one generic homoclinic classes with interior,, Bull. Braz. Math. Soc., 41 (2010), 125.  doi: 10.1007/s00574-010-0006-z.  Google Scholar

[9]

L. Wen, Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles,, Bull. Braz. Math. Soc., 35 (2004), 419.   Google Scholar

[10]

L. Wen, The selecting lemma of Liao,, Discrete Cont. Dynam. Syst., 20 (2008), 159.  doi: 10.3934/dcds.2008.20.159.  Google Scholar

[11]

X. Wen, S. Gan and L. Wen, $C^1$-stably shadowable chain components are hyperbolic,, J. Differential Equations, 246 (2009), 340.  doi: 10.1016/j.jde.2008.03.032.  Google Scholar

[12]

P. Zhang, A diffeomorphism with global dominated splitting can not be minimal,, Proc. Amer. Math. Soc., 140 (2012), 589.   Google Scholar

[1]

Junxiang Xu. On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2593-2619. doi: 10.3934/dcds.2013.33.2593

[2]

Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197

[3]

Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089

[4]

Chengming Cao, Xiaoping Yuan. Quasi-periodic solutions for perturbed generalized nonlinear vibrating string equation with singularities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1867-1901. doi: 10.3934/dcds.2017079

[5]

Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure & Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505

[6]

Pascal Cherrier, Albert Milani. Hyperbolic equations of Von Karman type. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 125-137. doi: 10.3934/dcdss.2016.9.125

[7]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[8]

Sergei A. Avdonin, Boris P. Belinskiy. Controllability of a string under tension. Conference Publications, 2003, 2003 (Special) : 57-67. doi: 10.3934/proc.2003.2003.57

[9]

Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91

[10]

Huashui Zhan. On a hyperbolic-parabolic mixed type equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 605-624. doi: 10.3934/dcdss.2017030

[11]

Basim A. Hassan. A new type of quasi-Newton updating formulas based on the new quasi-Newton equation. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019049

[12]

Ryan Alvarado, Irina Mitrea, Marius Mitrea. Whitney-type extensions in quasi-metric spaces. Communications on Pure & Applied Analysis, 2013, 12 (1) : 59-88. doi: 10.3934/cpaa.2013.12.59

[13]

Shaobo Gan. A generalized shadowing lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627

[14]

Simon Lloyd. On the Closing Lemma problem for the torus. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 951-962. doi: 10.3934/dcds.2009.25.951

[15]

Lan Wen. The selecting Lemma of Liao. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 159-175. doi: 10.3934/dcds.2008.20.159

[16]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[17]

Wen-Rong Dai. Formation of singularities to quasi-linear hyperbolic systems with initial data of small BV norm. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3501-3524. doi: 10.3934/dcds.2012.32.3501

[18]

M. Bauer, A. Lopes. A billiard in the hyperbolic plane with decay of correlation of type $n^{-2}$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 107-116. doi: 10.3934/dcds.1997.3.107

[19]

Yoshitsugu Kabeya. A unified approach to Matukuma type equations on the hyperbolic space or on a sphere. Conference Publications, 2013, 2013 (special) : 385-391. doi: 10.3934/proc.2013.2013.385

[20]

Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]