February  2013, 33(2): 885-903. doi: 10.3934/dcds.2013.33.885

Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074

2. 

Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, United Kingdom

3. 

Institut für Mathematik, Johann Wolfgang Goethe Universität, D-60054 Frankfurt am Main, Germany

Received  August 2011 Revised  December 2011 Published  September 2012

A discrete stochastic Razumikhin-type theorem is established to investigate whether the Euler--Maruyama (EM) scheme can reproduce the moment exponential stability of exact solutions of stochastic functional differential equations (SFDEs). In addition, the Chebyshev inequality and the Borel-Cantelli lemma are applied to show the almost sure stability of the EM approximate solutions of SFDEs. To show our idea clearly, these results are used to discuss stability of numerical solutions of two classes of special SFDEs, including stochastic delay differential equations (SDDEs) with variable delay and stochastically perturbed equations.
Citation: Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885
References:
[1]

C. T. H. Baker and E. Buckwar, Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations,, J. Comput. Appl. Math., 184 (2005), 404.  doi: 10.1016/j.cam.2005.01.018.  Google Scholar

[2]

K. Burrage, P. Burrage and T. Mitsui, Numerical solutions of stochastic differential equations-implication and stability issues,, J. Comput. Appl. Math., 125 (2000), 171.  doi: 10.1016/S0377-0427(00)00467-2.  Google Scholar

[3]

K. Burrage and T. Tian, A note on the stability properties of the Euler methods for solving stochastic differential equations,, New Zealand J. of Maths., 29 (2000), 115.   Google Scholar

[4]

T. Caraballo, P. E. Kloeden and J. Real, Discretization of asymptotically stable stationary solutions of delay differential equations with a random stationary delay,, J. Dyn. & Diff. Eqns., 18 (2006), 863.  doi: 10.1007/s10884-006-9022-5.  Google Scholar

[5]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,'', Springer, (1993).   Google Scholar

[6]

D. J. Higham, Mean-square and asymptotic stability of the stochastic theta method,, SIAM J. Numer. Anal., 38 (2000), 753.  doi: 10.1137/S003614299834736X.  Google Scholar

[7]

D. J. Higham, X. Mao and C. Yuan, Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations,, SIAM J. Numer. Anal., 45 (2007), 592.  doi: 10.1137/060658138.  Google Scholar

[8]

B. Liu and H. J. Marquez, Razumikhin-type stability theorems for discrete delay systems,, Automatica, 43 (2007), 1219.  doi: 10.1016/j.automatica.2006.12.032.  Google Scholar

[9]

X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations,, Sto. Proc. Their Appl., 65 (1996), 233.  doi: 10.1016/S0304-4149(96)00109-3.  Google Scholar

[10]

X. Mao, "Stochastic Differential Equations and Their Applications,'', Horwood Publishing, (1997).   Google Scholar

[11]

X. Mao, Numerical solutions of stochastic functional differential equations,, LMS J. Comput. Math., 6 (2003), 141.   Google Scholar

[12]

S. Pang, F. Deng and X. Mao, Almost sure and moment exponential stability of Euler-Maruyama discretizations for hybrid stochastic differential equations,, J. Comput. Appl. Math., 213 (2008), 127.  doi: 10.1016/j.cam.2007.01.003.  Google Scholar

[13]

Y. Saito and T. Mitsui, T-stability of numerical scheme for stochastic differential equations,, World Sci. Ser. Appl. Anal., 2 (1993), 333.   Google Scholar

[14]

Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations,, SIAM J. Numer. Anal., 33 (1996), 2254.  doi: 10.1137/S0036142992228409.  Google Scholar

[15]

F. Wu and X. Mao, Numerical solutions of neutral stochastic functional differential equations,, SIAM J. Numer. Anal., 46 (2008), 1821.  doi: 10.1137/070697021.  Google Scholar

[16]

F. Wu, X. Mao and L. Szpruch, Almost sure exponential stability of numerical solutions for stochastic delay differential equations,, Numer. Math., 115 (2010), 681.  doi: 10.1007/s00211-010-0294-7.  Google Scholar

[17]

F. Wu, X. Mao and P. E. Kloeden, Almost sure exponential stability of the Euler-Maruyama approximations for stochastic functional differential equations,, Random Oper. Stoch. Equ., 19 (2011), 165.  doi: 10.1515/ROSE.2011.010.  Google Scholar

[18]

C. Zhang and S. Vandewalle, Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization,, J. comput. Appl. Math., 164-165 (2004), 164.   Google Scholar

[19]

S. Zhang and M. P. Chen, A new Razumikhin Theorem for delay difference equations,, Comput. Math. Appl., 36 (1998), 405.  doi: 10.1016/S0898-1221(98)80041-2.  Google Scholar

show all references

References:
[1]

C. T. H. Baker and E. Buckwar, Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations,, J. Comput. Appl. Math., 184 (2005), 404.  doi: 10.1016/j.cam.2005.01.018.  Google Scholar

[2]

K. Burrage, P. Burrage and T. Mitsui, Numerical solutions of stochastic differential equations-implication and stability issues,, J. Comput. Appl. Math., 125 (2000), 171.  doi: 10.1016/S0377-0427(00)00467-2.  Google Scholar

[3]

K. Burrage and T. Tian, A note on the stability properties of the Euler methods for solving stochastic differential equations,, New Zealand J. of Maths., 29 (2000), 115.   Google Scholar

[4]

T. Caraballo, P. E. Kloeden and J. Real, Discretization of asymptotically stable stationary solutions of delay differential equations with a random stationary delay,, J. Dyn. & Diff. Eqns., 18 (2006), 863.  doi: 10.1007/s10884-006-9022-5.  Google Scholar

[5]

J. K. Hale and S. M. V. Lunel, "Introduction to Functional Differential Equations,'', Springer, (1993).   Google Scholar

[6]

D. J. Higham, Mean-square and asymptotic stability of the stochastic theta method,, SIAM J. Numer. Anal., 38 (2000), 753.  doi: 10.1137/S003614299834736X.  Google Scholar

[7]

D. J. Higham, X. Mao and C. Yuan, Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations,, SIAM J. Numer. Anal., 45 (2007), 592.  doi: 10.1137/060658138.  Google Scholar

[8]

B. Liu and H. J. Marquez, Razumikhin-type stability theorems for discrete delay systems,, Automatica, 43 (2007), 1219.  doi: 10.1016/j.automatica.2006.12.032.  Google Scholar

[9]

X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations,, Sto. Proc. Their Appl., 65 (1996), 233.  doi: 10.1016/S0304-4149(96)00109-3.  Google Scholar

[10]

X. Mao, "Stochastic Differential Equations and Their Applications,'', Horwood Publishing, (1997).   Google Scholar

[11]

X. Mao, Numerical solutions of stochastic functional differential equations,, LMS J. Comput. Math., 6 (2003), 141.   Google Scholar

[12]

S. Pang, F. Deng and X. Mao, Almost sure and moment exponential stability of Euler-Maruyama discretizations for hybrid stochastic differential equations,, J. Comput. Appl. Math., 213 (2008), 127.  doi: 10.1016/j.cam.2007.01.003.  Google Scholar

[13]

Y. Saito and T. Mitsui, T-stability of numerical scheme for stochastic differential equations,, World Sci. Ser. Appl. Anal., 2 (1993), 333.   Google Scholar

[14]

Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations,, SIAM J. Numer. Anal., 33 (1996), 2254.  doi: 10.1137/S0036142992228409.  Google Scholar

[15]

F. Wu and X. Mao, Numerical solutions of neutral stochastic functional differential equations,, SIAM J. Numer. Anal., 46 (2008), 1821.  doi: 10.1137/070697021.  Google Scholar

[16]

F. Wu, X. Mao and L. Szpruch, Almost sure exponential stability of numerical solutions for stochastic delay differential equations,, Numer. Math., 115 (2010), 681.  doi: 10.1007/s00211-010-0294-7.  Google Scholar

[17]

F. Wu, X. Mao and P. E. Kloeden, Almost sure exponential stability of the Euler-Maruyama approximations for stochastic functional differential equations,, Random Oper. Stoch. Equ., 19 (2011), 165.  doi: 10.1515/ROSE.2011.010.  Google Scholar

[18]

C. Zhang and S. Vandewalle, Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization,, J. comput. Appl. Math., 164-165 (2004), 164.   Google Scholar

[19]

S. Zhang and M. P. Chen, A new Razumikhin Theorem for delay difference equations,, Comput. Math. Appl., 36 (1998), 405.  doi: 10.1016/S0898-1221(98)80041-2.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]