Citation: |
[1] |
L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math., 116 (2000), 29-70.doi: 10.1007/BF02773211. |
[2] |
L. Barreira, "Dimension and Recurrence in Hyperbolic Dynamical," Progress in Mathematics 272, Birkhäuser, 2008. |
[3] |
R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.doi: 10.1090/S0002-9947-1973-0338317-X. |
[4] |
R. Bowen, Periodic points and measures for axiom-A-diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.doi: 10.1090/S0002-9947-1971-0282372-0. |
[5] |
J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754.doi: 10.1090/S0002-9947-97-01873-4. |
[6] |
Chen Ercai, Tassilo Küpper and Shu Lin, Topological entropy for divergence points, Ergod. Th. Dynam. Sys., 25 (2005), 1173-1208.doi: 10.1017/S0143385704000872. |
[7] |
M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Space," Of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 527, 1976, iv+360 pp. |
[8] |
A. H. Fan, D. J. Feng and J. Wu, Recurrence, dimensions and entropies, J. London Math. Soc., 64 (2001), 229-244.doi: 10.1017/S0024610701002137. |
[9] |
A. H. Fan and D. J. Feng, On the distribution of long-term time averages on symbolic space, J. Stat. Phys., 99 (2000), 813-856.doi: 10.1023/A:1018643512559. |
[10] |
A. H. Fan, L. M. Liao and J. Peyrière, Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dyn. Syst., 21 (2008), 1103-1128.doi: 10.3934/dcds.2008.21.1103. |
[11] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, 1995. |
[12] |
A. Katok, Fifty years of entropy in dynamics: 1958-2007, J. Mod. Dyn.,1 (2007), 545-596. |
[13] |
K. S. Lau and L. Shu, The spectrum of Poincare recurrence, Ergod. Th. Dynam. Sys., 28 (2008), 1917-1943.doi: 10.1017/S0143385707001095. |
[14] |
J. J. Li, M. Wu and Y. Xiong, Hausdorff dimensions of the divergence points of self-similar measures with the open set condition, Nonlinearity, 25 (2012), 93-105.doi: 10.1088/0951-7715/25/1/93. |
[15] |
E. Olivier, Analyse multifractale de fonctions continues, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1171-1174.doi: 10.1016/S0764-4442(98)80221-8. |
[16] |
L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc., 67 (2003), 103-122.doi: 10.1112/S0024610702003630. |
[17] |
L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl., 82 (2003), 1591-1649. |
[18] |
Y. B. Pesin, "Dimension Theory in Dynamical System: Contemporary Views and Applications," University of Chicago Press, Chicago, 1997. |
[19] |
C. E. Pfister and W. G. Sullivan, On the topological entropy of saturated set, Ergod. Th. Dynam. Sys., 27 (2007), 929-956.doi: 10.1017/S0143385706000824. |
[20] |
F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergod. Th. Dynam. Sys., 23 (2003), 317-348.doi: 10.1017/S0143385702000913. |
[21] |
D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dynamical Systems : An International Journal, 25(1) (2010), 25-51. |
[22] |
P. Water, "An Introduction to Ergodic Theory," Springer-Verlage, New York-Berlin, 1982. |