\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Divergence points in systems satisfying the specification property

Abstract Related Papers Cited by
  • Let $f$ be a continuous transformation of a compact metric space $(X,d)$ and $\varphi$ any continuous function on $X$. In this paper, under the hypothesis that $f$ satisfies the specification property, we determine the topological entropy of the following sets: $$K_{I}=\Big\{x\in X: A\big(\frac{1}{n}\sum_{i=0}^{n-1}\varphi(f^{i}(x))\big)=I\Big\},$$ where $I$ is a closed subinterval of $\mathbb{R}$ and $A(a_{n})$ denotes the set of accumulation points of the sequence $\{a_{n}\}_{n}$. Our result generalizes the classical result of Takens and Verbitskiy ( Ergod. Th. Dynam. Sys., 23 (2003), 317-348 ). As an application, we present another concise proof of the fact that the irregular set has full topological entropy if $f$ satisfies the specification property.
    Mathematics Subject Classification: 37B40, 37A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension, Israel J. Math., 116 (2000), 29-70.doi: 10.1007/BF02773211.

    [2]

    L. Barreira, "Dimension and Recurrence in Hyperbolic Dynamical," Progress in Mathematics 272, Birkhäuser, 2008.

    [3]

    R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.doi: 10.1090/S0002-9947-1973-0338317-X.

    [4]

    R. Bowen, Periodic points and measures for axiom-A-diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.doi: 10.1090/S0002-9947-1971-0282372-0.

    [5]

    J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754.doi: 10.1090/S0002-9947-97-01873-4.

    [6]

    Chen Ercai, Tassilo Küpper and Shu Lin, Topological entropy for divergence points, Ergod. Th. Dynam. Sys., 25 (2005), 1173-1208.doi: 10.1017/S0143385704000872.

    [7]

    M. Denker, C. Grillenberger and K. Sigmund, "Ergodic Theory on Compact Space," Of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 527, 1976, iv+360 pp.

    [8]

    A. H. Fan, D. J. Feng and J. Wu, Recurrence, dimensions and entropies, J. London Math. Soc., 64 (2001), 229-244.doi: 10.1017/S0024610701002137.

    [9]

    A. H. Fan and D. J. Feng, On the distribution of long-term time averages on symbolic space, J. Stat. Phys., 99 (2000), 813-856.doi: 10.1023/A:1018643512559.

    [10]

    A. H. Fan, L. M. Liao and J. Peyrière, Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dyn. Syst., 21 (2008), 1103-1128.doi: 10.3934/dcds.2008.21.1103.

    [11]

    A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, 1995.

    [12]

    A. Katok, Fifty years of entropy in dynamics: 1958-2007, J. Mod. Dyn.,1 (2007), 545-596.

    [13]

    K. S. Lau and L. Shu, The spectrum of Poincare recurrence, Ergod. Th. Dynam. Sys., 28 (2008), 1917-1943.doi: 10.1017/S0143385707001095.

    [14]

    J. J. Li, M. Wu and Y. Xiong, Hausdorff dimensions of the divergence points of self-similar measures with the open set condition, Nonlinearity, 25 (2012), 93-105.doi: 10.1088/0951-7715/25/1/93.

    [15]

    E. Olivier, Analyse multifractale de fonctions continues, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1171-1174.doi: 10.1016/S0764-4442(98)80221-8.

    [16]

    L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc., 67 (2003), 103-122.doi: 10.1112/S0024610702003630.

    [17]

    L. Olsen, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl., 82 (2003), 1591-1649.

    [18]

    Y. B. Pesin, "Dimension Theory in Dynamical System: Contemporary Views and Applications," University of Chicago Press, Chicago, 1997.

    [19]

    C. E. Pfister and W. G. Sullivan, On the topological entropy of saturated set, Ergod. Th. Dynam. Sys., 27 (2007), 929-956.doi: 10.1017/S0143385706000824.

    [20]

    F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergod. Th. Dynam. Sys., 23 (2003), 317-348.doi: 10.1017/S0143385702000913.

    [21]

    D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dynamical Systems : An International Journal, 25(1) (2010), 25-51.

    [22]

    P. Water, "An Introduction to Ergodic Theory," Springer-Verlage, New York-Berlin, 1982.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return