- Previous Article
- DCDS Home
- This Issue
-
Next Article
Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity
$P$-cyclic symmetric closed characteristics on compact convex $P$-cyclic symmetric hypersurface in R2n
1. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
References:
[1] |
S. E. Cappell, R. Lee and E. Y. Miller, On the Maslov-type index, Comm. Pure Appl. Math, 47 (1994), 121-186. |
[2] |
C. Conley and E. Zehnder, Maslov-type index theory for flows and periodix solutions for Hamiltonian equations, Commu. Pure. Appl. Math, 37 (1984), 207-253.
doi: 10.1002/cpa.3160370204. |
[3] |
Y. Dong and Y. Long, Closed characteristics on partially symmetric compact convex hyper surfaces in R2n, J. Differential Equations, 196 (2004), 226-248.
doi: 10.1016/S0022-0396(03)00168-2. |
[4] |
Y. Dong, P-index theory for linear Hamiltonian systems and multiple solutions for nonlinear Hamiltonian systems, Nonlinearity, 19 (2006), 1275-1294.
doi: 10.1088/0951-7715/19/6/004. |
[5] |
J. J. Duistermaat, "Fourier Integral Operators," Birkhäauser, Basel, 1996. |
[6] |
I. Ekeland, "Convexity Methods in Hamiltonian Mechanics," Spring-Verlag, Berlin, 1990. |
[7] |
I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and there closed trajectories, Comm. Math. Phys., 113 (1987), 419-467.
doi: 10.1007/BF01221255. |
[8] |
I. Ekeland and L. Lassoued, Multiplicité des trajectoires fermées de systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. NonLinéaire, 4 (1987), 307-335. |
[9] |
E. Fadell and P. H. Rabinowitz, Generalized cohomologyical index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Ivent. Math, 45 (1978), 139-174. |
[10] |
X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltoinan systems with application to figure-eight orbits, Commun. Math. Phys., 290 (2009), 737-777.
doi: 10.1007/s00220-009-0860-y. |
[11] |
C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hyper surfaces in R2n, Math. Ann., 323 (2002), 201-215. |
[12] |
C. Liu and D. Zhang, Iteration theory of L-index and Multiplicity of brake orbits, arXiv:0908.0021. |
[13] |
H. Liu, P-invariant closed characteristics on partially symmetric compact convex hypersurfsces in R2n. preprint |
[14] |
Y. Long, D. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Advances in Math, 203 (2006), 568-635. |
[15] |
Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math, 187 (1999), 113-149. |
[16] |
Y. Long, "Index Theory for Symplectic Paths with Applications," Birkhäuser, Basel, 2002. |
[17] |
Y. Long and C. Zhu, Maslov-type index theory for symplectic paths and spectral flow(II), Chinese Ann. of Math, 21 (2000), 89-108.
doi: 10.1142/S0252959900000133. |
[18] |
Y. Long and C. Zhu, Closed characteristics on compact convex hyper surface in R2n, Ann. of Math, 155 (2002), 317-368. |
[19] |
P. H. Rabinowitz, Periodic solution of Hamiltonian systems, Commu. Pure Appl. Math, 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[20] |
J. Robbin and D. Salamon, The Maslov indices for paths, Topology, 32 (1993), 827-844.
doi: 10.1016/0040-9383(93)90052-W. |
[21] |
J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc., 27 (1995), 1-33.
doi: 10.1112/blms/27.1.1. |
[22] |
A. Szulkin, Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. Soc. Math. France, 116 (1988), 171-197. |
[23] |
K. Uhlenbeck, The Morse index theorem in Hilbert space, J. Differential Geom., 8 (1973), 555-564. |
[24] |
W. Wang, X. Hu and Y. Long, Resonance identity, stability, and multiplicity of closed characteristics on compact convex hyper surfaces, Duke Math. J., 139 (2007), 411-462.
doi: 10.1215/S0012-7094-07-13931-0. |
[25] |
A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math, 108 (1978), 507-518.
doi: 10.2307/1971185. |
[26] |
D. Zhang, Multiple symmetric brake orbits in bounded convex symmetric domains, Advanced Nonl. Studies, 6 (2006), 643-653. |
[27] |
C. Zhu and Y. Long, Maslov index theory for symplectic paths and spectral flow(I), Chinese Ann. of Math, 208 (1999), 413-424.
doi: 10.1142/S0252959999000485. |
show all references
References:
[1] |
S. E. Cappell, R. Lee and E. Y. Miller, On the Maslov-type index, Comm. Pure Appl. Math, 47 (1994), 121-186. |
[2] |
C. Conley and E. Zehnder, Maslov-type index theory for flows and periodix solutions for Hamiltonian equations, Commu. Pure. Appl. Math, 37 (1984), 207-253.
doi: 10.1002/cpa.3160370204. |
[3] |
Y. Dong and Y. Long, Closed characteristics on partially symmetric compact convex hyper surfaces in R2n, J. Differential Equations, 196 (2004), 226-248.
doi: 10.1016/S0022-0396(03)00168-2. |
[4] |
Y. Dong, P-index theory for linear Hamiltonian systems and multiple solutions for nonlinear Hamiltonian systems, Nonlinearity, 19 (2006), 1275-1294.
doi: 10.1088/0951-7715/19/6/004. |
[5] |
J. J. Duistermaat, "Fourier Integral Operators," Birkhäauser, Basel, 1996. |
[6] |
I. Ekeland, "Convexity Methods in Hamiltonian Mechanics," Spring-Verlag, Berlin, 1990. |
[7] |
I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and there closed trajectories, Comm. Math. Phys., 113 (1987), 419-467.
doi: 10.1007/BF01221255. |
[8] |
I. Ekeland and L. Lassoued, Multiplicité des trajectoires fermées de systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. NonLinéaire, 4 (1987), 307-335. |
[9] |
E. Fadell and P. H. Rabinowitz, Generalized cohomologyical index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Ivent. Math, 45 (1978), 139-174. |
[10] |
X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltoinan systems with application to figure-eight orbits, Commun. Math. Phys., 290 (2009), 737-777.
doi: 10.1007/s00220-009-0860-y. |
[11] |
C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hyper surfaces in R2n, Math. Ann., 323 (2002), 201-215. |
[12] |
C. Liu and D. Zhang, Iteration theory of L-index and Multiplicity of brake orbits, arXiv:0908.0021. |
[13] |
H. Liu, P-invariant closed characteristics on partially symmetric compact convex hypersurfsces in R2n. preprint |
[14] |
Y. Long, D. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Advances in Math, 203 (2006), 568-635. |
[15] |
Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math, 187 (1999), 113-149. |
[16] |
Y. Long, "Index Theory for Symplectic Paths with Applications," Birkhäuser, Basel, 2002. |
[17] |
Y. Long and C. Zhu, Maslov-type index theory for symplectic paths and spectral flow(II), Chinese Ann. of Math, 21 (2000), 89-108.
doi: 10.1142/S0252959900000133. |
[18] |
Y. Long and C. Zhu, Closed characteristics on compact convex hyper surface in R2n, Ann. of Math, 155 (2002), 317-368. |
[19] |
P. H. Rabinowitz, Periodic solution of Hamiltonian systems, Commu. Pure Appl. Math, 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[20] |
J. Robbin and D. Salamon, The Maslov indices for paths, Topology, 32 (1993), 827-844.
doi: 10.1016/0040-9383(93)90052-W. |
[21] |
J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc., 27 (1995), 1-33.
doi: 10.1112/blms/27.1.1. |
[22] |
A. Szulkin, Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. Soc. Math. France, 116 (1988), 171-197. |
[23] |
K. Uhlenbeck, The Morse index theorem in Hilbert space, J. Differential Geom., 8 (1973), 555-564. |
[24] |
W. Wang, X. Hu and Y. Long, Resonance identity, stability, and multiplicity of closed characteristics on compact convex hyper surfaces, Duke Math. J., 139 (2007), 411-462.
doi: 10.1215/S0012-7094-07-13931-0. |
[25] |
A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math, 108 (1978), 507-518.
doi: 10.2307/1971185. |
[26] |
D. Zhang, Multiple symmetric brake orbits in bounded convex symmetric domains, Advanced Nonl. Studies, 6 (2006), 643-653. |
[27] |
C. Zhu and Y. Long, Maslov index theory for symplectic paths and spectral flow(I), Chinese Ann. of Math, 208 (1999), 413-424.
doi: 10.1142/S0252959999000485. |
[1] |
Hui Liu, Duanzhi Zhang. Stable P-symmetric closed characteristics on partially symmetric compact convex hypersurfaces. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 877-893. doi: 10.3934/dcds.2016.36.877 |
[2] |
Wei Wang. Closed trajectories on symmetric convex Hamiltonian energy surfaces. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 679-701. doi: 10.3934/dcds.2012.32.679 |
[3] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378 |
[4] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[5] |
Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047 |
[6] |
Muhammad Hamid, Wei Wang. A symmetric property in the enhanced common index jump theorem with applications to the closed geodesic problem. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1933-1948. doi: 10.3934/dcds.2021178 |
[7] |
Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004 |
[8] |
Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603 |
[9] |
Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068 |
[10] |
André Vanderbauwhede. Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 359-363. doi: 10.3934/dcds.2013.33.359 |
[11] |
Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337 |
[12] |
Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939 |
[13] |
Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983 |
[14] |
Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249 |
[15] |
Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91 |
[16] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[17] |
Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173 |
[18] |
Hui Liu, Ling Zhang. Multiplicity of closed Reeb orbits on dynamically convex $ \mathbb{R}P^{2n-1} $ for $ n\geq2 $. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1801-1816. doi: 10.3934/dcds.2021172 |
[19] |
Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017 |
[20] |
Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]