Citation: |
[1] |
P. B. Acosta-Humanez, "Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schrodinger Equation by Means of Differential Galois Theory," VDM Verlag, Dr Müller, Berlin, 2010. |
[2] |
P. B. Acosta-Humanez, J. J. Morales-Ruiz and J. A. Weil, Galoisian approach to integrability of the schrödinger equation, Rep. Math. Phys., 67 (2011), 305-374. |
[3] |
R. H. Berg and T. S. Marshall, Wilberforce pendulum oscillations and normal modes, Am. J. Phys., 59 (1991), 32-38.doi: 10.1119/1.16702. |
[4] |
D. Blázquez-Sanz and J. J. Morales-Ruiz, Differential Galois theory of algebraic Lie-Vessiot systems, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc., Providence, RI, 509 (2010), 1-58. |
[5] |
R. C. Churchill, J. Delgado and D. L. Rod, The spring pendulum system and the Riemann equation, New trends for Hamiltonian systems and celestial mechanics, Adv. Ser. Nonlinear Dynam., World Sci. Publ., River Edge, NJ, 8 (1996), 97-103. |
[6] |
J. Kovacic, An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Computation, 2 (1986), 3-43.doi: 10.1016/S0747-7171(86)80010-4. |
[7] |
A. Maciejewski, M. Przybylska and J. A. Weil, Non-integrability of the generalized spring-pendulum problem, J. Phys. A, 37 (2004), 2579-2597. |
[8] |
R. Martínez and C. Simó, Non-integrability of the degenerate cases of the swinging Atwood's machine using higher order variational equations, Discrete Contin. Dyn. Syst., 29 (2011), 1-24. |
[9] |
J. J. Morales-Ruiz, "Differential Galois Theory and Non-integrability of Hamiltonian Systems," Progress in Mathematics 179, Birkhäuser, 1999. |
[10] |
J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of hamiltonian systems I, Methods Appl. Anal., 8 (2001), 33-95. |
[11] |
J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of hamiltonian systems II, Methods Appl. Anal., 8 (2001), 97-111. |
[12] |
J. J. Morales-Ruiz, C. Simó and S. Simon, Algebraic proof of the non-integrability of Hill's problem, Ergodic Theory Dynam. Systems, 25 (2005), 1237-1256. |
[13] |
J. J. Morales-Ruiz, J. P. Ramis and C. Simó, Integrability of hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4), 40 (2007), 845-884. |
[14] |
J. Muñoz, J. Rodríguez and F. J. Muriel, Weil bundles and Jet spaces, Czech. Math. J., 50 (2000), 721-748. |
[15] |
J. Martinet and J. P. Ramis, Théorie de Galois différentielle et resommation, Computer algebra and differential equations, Comput. Math. Appl., Academic Press, London, (1990), 117-224. |