Advanced Search
Article Contents
Article Contents

Horseshoe periodic orbits with one symmetry in the general planar three-body problem

Abstract Related Papers Cited by
  • Using collinear reversible configurations and some properties of symmetry we obtain horseshoe periodic orbits in the general planar three-body problem with masses $m_1\gg m_2 \geq m_3$, which usually represents a system formed by a planet and two small satellites; for instance, the system Saturn-Janus-Epimetheus. For the numerical analysis we have taken the values $m_2/m_1 = 3.5 \times 10^{-4}$ and $m_3/m_1 = 9.7 \times 10^{-5}$ corresponding to $10^5$ times the mass ratios of Saturn-Janus and Saturn-Epimetheus,
    Mathematics Subject Classification: Primary: 70F15, 70F07, 70H12; Secondary: 37M05.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Barrabés and S. Mikkola, Families of periodic horseshoe orbits in the restricted three-body problem, Astron, Astrophys, 432 (2005), 1115-1129.doi: 10.1051/0004-6361:20041483.


    A. Bengochea and E. Piña, The Saturn, Janus and Epimetheus dynamics as a gravitational three-body problem in the plane, Rev. Mexicana Fís., 55 (2009), 97-105.


    A. Bengochea, M. Falconi and E. Pérez-Chavela, Symmetric horseshoe periodic orbits in the general planar three-body problem, Astrophys. Space Sci., 333 (2011), 399-408.doi: 10.1007/s10509-011-0641-x.


    J. M. Cors and G. R. Hall, Coorbital periodic orbits in the three body problem, SIAM J. Appl. Dyn. Syst., 2 (2003), 219-237.doi: 10.1137/S1111111102411304.


    S. F. Dermott and C. D. Murray, The dynamics of tadpole and horseshoe orbits. I. Theory, Icarus, 48 (1981), 1-11.doi: 10.1016/0019-1035(81)90147-0.


    S. F. Dermott and C. D. Murray, The dynamics of tadpole and horseshoe orbits. II. The coorbital satellites of Saturn, Icarus, 48 (1981), 12-22.doi: 10.1016/0019-1035(81)90148-2.


    J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6 (1980), 19-26.doi: 10.1016/0771-050X(80)90013-3.


    M. Hénon and J. M. Petit, Series expansion of encounter-type solutions of Hill's problem, Celest. Mech. Dynam. Astron., 38 (1986), 67-100.


    X. Y. Hou and L. Liu, The symmetric horseshoe periodic families and the lyapunov planar family around $L_3$, Astron. J., 136 (2008), 67-75.doi: 10.1088/0004-6256/136/1/67.


    J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: A survey, Phys. D, 112 (1998), 1-39.doi: 10.1016/S0167-2789(97)00199-1.


    J. Llibre and M. Ollé, The motion of Saturn coorbital satellites in the restricted three-body problem, Astron. Astrophys, 378 (2001), 1087-1099.doi: 10.1051/0004-6361:20011274.


    K. R. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem,'' $1^{st}$ edition, Springer-Verlag, New York, 1992.


    F. J. Muñoz-Almaraz, J. Galán and E. Freire, Families of symmetric periodic orbits in the three body problem and the figure eight, Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 25 (2004), 229-240.


    J. M. Petit and M. Hénon, Satellite encounters, Icarus, 66 (1986), 536-555.doi: 10.1016/0019-1035(86)90089-8.


    A. E. Roy and M. W. Ovenden, On the occurrence of commensurable mean motions in the solar system. II. The mirror theorem, Mon. Not. R. Astron. Soc., 115 (1955), 296-309.


    F. Spirig and J. Waldvogel, The three-body problem with two small masses: A singular-perturbation approach to the problem of Saturn's coorbiting satellites, in "Stability of the Solar System and its Minor Natural and Artificial Bodies,'' (ed. V. G. Szebehely), Reidel, (1985), 53-63.doi: 10.1007/978-94-009-5398-7_5.


    C. F. Yoder, G. Colombo, S. P. Synnott and K. A. Yoder, Theory of motion of Saturn's coorbiting satellites, Icarus, 53 (1983), 431-443.doi: 10.1016/0019-1035(83)90207-5.


    C. F. Yoder, S. P. Synnott and H. Salo, Orbits and masses of Saturn's co-orbiting satellites, Janus and Epimetheus, Astron. J., 98 (1989), 1875-1889.doi: 10.1086/115265.


    J. Waldvogel and F. Spirig, Co-orbital satellites and hill's lunar problem, in "Long-Term Dynamical Behaviour of Natural and Artificial N-Body Systems'' (ed. A. E. Roy), Kluwer, (1988), 223-234.doi: 10.1007/978-94-009-3053-7_20.

  • 加载中

Article Metrics

HTML views() PDF downloads(201) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint