March  2014, 34(3): 1009-1020. doi: 10.3934/dcds.2014.34.1009

A conditional, collision-avoiding, model for swarming

1. 

Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China

2. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

Received  October 2012 Revised  March 2013 Published  August 2013

We propose a model for swarming (i.e., cohesion preserving) that shares all the good properties of the CS-model for flocking. In particular, we show for this model that under strong interactions of the agents swarming unconditionally occurs and that, furthermore, it does so in a collision avoiding manner. We also show that under weak interactions the same holds true provided the initial state of the population (their positions and velocities) satisfies some explicit inequalities.
Citation: Felipe Cucker, Jiu-Gang Dong. A conditional, collision-avoiding, model for swarming. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1009-1020. doi: 10.3934/dcds.2014.34.1009
References:
[1]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM. J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290.

[2]

Y. Chuang, Y. Huang, M. D'Orsogna and A. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials, IEEE International Conference on Robotics and Automation, (2007), 2292-2299. doi: 10.1109/ROBOT.2007.363661.

[3]

E. Cristiani, P. Frasca and B. Piccoli, Effects of anisotropic interactions on the structure of animal groups, J. Math. Biol., 62 (2011), 569-588. doi: 10.1007/s00285-010-0347-7.

[4]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Autom. Control, 56 (2011), 1124-1129. doi: 10.1109/TAC.2011.2107113.

[5]

F. Cucker and C. Huepe, Flocking with informed agents, Mathematics in Action, 1 (2008), 1-25. doi: 10.5802/msia.1.

[6]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296. doi: 10.1016/j.matpur.2007.12.002.

[7]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[8]

F. Dalmao and E. Mordecki, Cucker-Smale flocking under hierarchical leadership and random interactions, SIAM. J. App. Math., 71 (2011), 1307-1316. doi: 10.1137/100785910.

[9]

V. Gazi and K. M. Passino, Stability analysis of swarms, IEEE Trans. Autom. Control, 48 (2003), 692-697. doi: 10.1109/TAC.2003.809765.

[10]

V. Gazi and K. M. Passino, Stability analysis of social foraging swarms, IEEE Trans. Syst., Man, Cybern. B, 34 (2004), 539-557. doi: 10.1109/TSMCB.2003.817077.

[11]

V. Gazi and K. M. Passino, A class of attractions/repulsion functions for stable swarm aggregations, Int. J. Control, 77 (2004), 1567-1579. doi: 10.1080/00207170412331330021.

[12]

S.-Y. Ha, T.-Y. Ha and J.-G. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Autom. Control, 55 (2010), 1679-1683. doi: 10.1109/TAC.2010.2046113.

[13]

S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.

[14]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[15]

M. Hirsch and S. Smale, "Differential Equations, Dynamical Systems, and Linear Algebra," 60 of Pure and Applied Mathematics. Academic Press, 1974.

[16]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. on Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781.

[17]

J. Kang, S.Y. Ha, E. Jeong and K. K. Kang, How do cultural classes emerge from assimilation and distinction? An extension of the Cucker-Smale flocking model,, To Appear in J. Mathematical Sociology., (). 

[18]

H. K. Khalil, "Nonlinear Systems," 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.

[19]

N. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, Proc. 40th IEEE Conf. Decision Contr., (2001), 2968-2973.

[20]

W. Li, Stability analysis of swarms with general topology, IEEE Trans. Syst., Man, Cybern. B, 38 (2008), 1084-1097.

[21]

L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formations, Journal of Guidance, Control, and Dynamics, 32 (2009), 526-536. doi: 10.2514/1.36269.

[22]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math, 68 (2007), 694-719. doi: 10.1137/060673254.

[23]

J. J. E. Slotine and W. Li, "Applied Nonlinear Control," Englewood Cliffs, NJ: Prentice-Hall, 1991.

[24]

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140. doi: 10.1016/j.physrep.2012.03.004.

show all references

References:
[1]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM. J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290.

[2]

Y. Chuang, Y. Huang, M. D'Orsogna and A. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials, IEEE International Conference on Robotics and Automation, (2007), 2292-2299. doi: 10.1109/ROBOT.2007.363661.

[3]

E. Cristiani, P. Frasca and B. Piccoli, Effects of anisotropic interactions on the structure of animal groups, J. Math. Biol., 62 (2011), 569-588. doi: 10.1007/s00285-010-0347-7.

[4]

F. Cucker and J.-G. Dong, A general collision-avoiding flocking framework, IEEE Trans. Autom. Control, 56 (2011), 1124-1129. doi: 10.1109/TAC.2011.2107113.

[5]

F. Cucker and C. Huepe, Flocking with informed agents, Mathematics in Action, 1 (2008), 1-25. doi: 10.5802/msia.1.

[6]

F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296. doi: 10.1016/j.matpur.2007.12.002.

[7]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Autom. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[8]

F. Dalmao and E. Mordecki, Cucker-Smale flocking under hierarchical leadership and random interactions, SIAM. J. App. Math., 71 (2011), 1307-1316. doi: 10.1137/100785910.

[9]

V. Gazi and K. M. Passino, Stability analysis of swarms, IEEE Trans. Autom. Control, 48 (2003), 692-697. doi: 10.1109/TAC.2003.809765.

[10]

V. Gazi and K. M. Passino, Stability analysis of social foraging swarms, IEEE Trans. Syst., Man, Cybern. B, 34 (2004), 539-557. doi: 10.1109/TSMCB.2003.817077.

[11]

V. Gazi and K. M. Passino, A class of attractions/repulsion functions for stable swarm aggregations, Int. J. Control, 77 (2004), 1567-1579. doi: 10.1080/00207170412331330021.

[12]

S.-Y. Ha, T.-Y. Ha and J.-G. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Autom. Control, 55 (2010), 1679-1683. doi: 10.1109/TAC.2010.2046113.

[13]

S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.

[14]

S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415.

[15]

M. Hirsch and S. Smale, "Differential Equations, Dynamical Systems, and Linear Algebra," 60 of Pure and Applied Mathematics. Academic Press, 1974.

[16]

A. Jadbabaie, J. Lin and A. S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. on Autom. Control, 48 (2003), 988-1001. doi: 10.1109/TAC.2003.812781.

[17]

J. Kang, S.Y. Ha, E. Jeong and K. K. Kang, How do cultural classes emerge from assimilation and distinction? An extension of the Cucker-Smale flocking model,, To Appear in J. Mathematical Sociology., (). 

[18]

H. K. Khalil, "Nonlinear Systems," 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.

[19]

N. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups, Proc. 40th IEEE Conf. Decision Contr., (2001), 2968-2973.

[20]

W. Li, Stability analysis of swarms with general topology, IEEE Trans. Syst., Man, Cybern. B, 38 (2008), 1084-1097.

[21]

L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space flight formations, Journal of Guidance, Control, and Dynamics, 32 (2009), 526-536. doi: 10.2514/1.36269.

[22]

J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math, 68 (2007), 694-719. doi: 10.1137/060673254.

[23]

J. J. E. Slotine and W. Li, "Applied Nonlinear Control," Englewood Cliffs, NJ: Prentice-Hall, 1991.

[24]

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140. doi: 10.1016/j.physrep.2012.03.004.

[1]

Claudia Totzeck. An anisotropic interaction model with collision avoidance. Kinetic and Related Models, 2020, 13 (6) : 1219-1242. doi: 10.3934/krm.2020044

[2]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[3]

Jianfei Cheng, Xiao Wang, Yicheng Liu. Collision-avoidance and flocking in the Cucker–Smale-type model with a discontinuous controller. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1733-1748. doi: 10.3934/dcdss.2021169

[4]

Adriano Festa, Andrea Tosin, Marie-Therese Wolfram. Kinetic description of collision avoidance in pedestrian crowds by sidestepping. Kinetic and Related Models, 2018, 11 (3) : 491-520. doi: 10.3934/krm.2018022

[5]

Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial and Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443

[6]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[7]

Seung-Yeal Ha, Hansol Park. Emergent behaviors of the generalized Lohe matrix model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4227-4261. doi: 10.3934/dcdsb.2020286

[8]

Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641

[9]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105

[10]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks and Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[11]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Uniform-in-time continuum limit of the lattice Winfree model and emergent dynamics. Kinetic and Related Models, 2021, 14 (6) : 1003-1033. doi: 10.3934/krm.2021036

[12]

Hansol Park. Generalization of the Winfree model to the high-dimensional sphere and its emergent dynamics. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 707-735. doi: 10.3934/dcds.2021134

[13]

Cédric Bernardin, Valeria Ricci. A simple particle model for a system of coupled equations with absorbing collision term. Kinetic and Related Models, 2011, 4 (3) : 633-668. doi: 10.3934/krm.2011.4.633

[14]

Xiaoli Wang, Peter Kloeden, Meihua Yang. Asymptotic behaviour of a neural field lattice model with delays. Electronic Research Archive, 2020, 28 (2) : 1037-1048. doi: 10.3934/era.2020056

[15]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[16]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[17]

Young-Pil Choi, Cristina Pignotti. Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks and Heterogeneous Media, 2019, 14 (4) : 789-804. doi: 10.3934/nhm.2019032

[18]

Jinwook Jung, Peter Kuchling. Emergent dynamics of the fractional Cucker-Smale model under general network topologies. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022077

[19]

Razvan C. Fetecau, Mitchell Kovacic, Ihsan Topaloglu. Swarming in domains with boundaries: Approximation and regularization by nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1815-1842. doi: 10.3934/dcdsb.2018238

[20]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (120)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]