    March  2014, 34(3): 1041-1060. doi: 10.3934/dcds.2014.34.1041

## Bernstein-type approximation of set-valued functions in the symmetric difference metric

 1 School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel, Israel

Received  November 2012 Revised  February 2013 Published  August 2013

We study the approximation of univariate and multivariate set-valued functions (SVFs) by the adaptation to SVFs of positive sample-based approximation operators for real-valued functions. To this end, we introduce a new weighted average of several sets and study its properties. The approximation results are obtained in the space of Lebesgue measurable sets with the symmetric difference metric.
In particular, we apply the new average of sets to adapt to SVFs the classical Bernstein approximation operators, and show that these operators approximate continuous SVFs. The rate of approximation of Hölder continuous SVFs by the adapted Bernstein operators is studied and shown to be asymptotically equal to the one for real-valued functions. Finally, the results obtained in the metric space of sets are generalized to metric spaces endowed with an average satisfying certain properties.
Citation: Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041
##### References:
  Z. Artstein, Piecewise linear approximations of set-valued maps, Journal of Approximation Theory, 56 (1989), 41-47. doi: 10.1016/0021-9045(89)90131-7.  Google Scholar  R. Baier and E. Farkhi, Differences of convex compact sets in the space of directed sets. Part I: The space of directed sets, Set-Valued Analysis, 9 (2001), 217-245. doi: 10.1023/A:1012046027626.  Google Scholar  R. Baier and G. Perria, Set-valued hermite interpolation, Journal of Approximation Theory, 163 (2011), 1349-1372. doi: 10.1016/j.jat.2010.11.004.  Google Scholar  S. Bernstein, Démonstration du théoreme de weierstrass fondée sur le calcul des probabilités, Commun. Soc. Math. Kharkow, 13 (1912), 1-2. Google Scholar  D. Burago, Y. Burago, S. Ivanov and A. M. Society, "A Course in Metric Geometry," American Mathematical Society, 2001. Google Scholar  C. De Boor, "A Practical Guide to Splines," Springer Verlag, 2001. Google Scholar  R. DeVore and G. Lorentz, "Constructive Approximation," Springer, 1993. Google Scholar  N. Dyn and E. Farkhi, Spline subdivision schemes for convex compact sets, Journal of Computational and Applied Mathematics, 119 (2000), 133-144. doi: 10.1016/S0377-0427(00)00375-7.  Google Scholar  N. Dyn and E. Farkhi, Spline subdivision schemes for compact sets with metric averages, Trends in Approximation Theory, (2001), 93-102. Google Scholar  N. Dyn and E. Farkhi, Set-valued approximations with Minkowski averages-convergence and convexification rates, Numerical Functional Analysis and Optimization, 25 (2004), 363-377. doi: 10.1081/NFA-120039682.  Google Scholar  N. Dyn, E. Farkhi and A. Mokhov, Approximation of univariate set-valued functions-an overview, Serdica Math. J., 33 (2007), 495-514. Google Scholar  N. Dyn, E. Farkhi and A. Mokhov, Approximations of set-valued functions by metric linear operators, Constructive Approximation, 25 (2007), 193-209. doi: 10.1007/s00365-006-0632-9.  Google Scholar  N. Dyn and A. Mokhov, Approximations of set-valued functions based on the metric average, Rendiconti di Matematica, 26 (2006), 249-266. Google Scholar  G. Farin, "Curves and Surfaces for CAGD: A Practical Guide," Morgan Kaufmann Pub, 2002. Google Scholar  W. Feller, "An Introduction to Probability Theory and Its Applications," I, John Wiley & Sons, 1968. Google Scholar  P. Halmos, "Naive Set Theory," Springer-Verlag, New York-Heidelberg, 1974. Google Scholar  M. Kac, Une remarque sur les polynomes de m.s. bernstein, Studia Math, 7 (1938), 49-51. Google Scholar  M. Kac, Reconnaissance de priorité relative a ma note, une remarque sur les polynomes de m.s. bernstein, Studia Math, 8 (1939), 170. Google Scholar  S. Kels and N. Dyn, Subdivision schemes of sets and the approximation of set-valued functions in the symmetric difference metric, Arxiv Preprint arXiv:1111.6844, (2011). doi: 10.1007/s10208-013-9146-z. Google Scholar  K. Levasseur, A probabilistic proof of the Weierstrass approximation theorem, Amer. Math. Monthly, 91 (1984), 249-250. doi: 10.2307/2322960.  Google Scholar  P. Mathé, Approximation of holder continuous functions by Bernstein polynomials, The American Mathematical Monthly, 106 (1999), 568-574. doi: 10.2307/2589469.  Google Scholar  P. Mathé, Asymptotic constants for multivariate Bernstein polynomials, Studia Scientiarum Mathematicarum Hungarica, 40 (2003), 59-69. doi: 10.1556/SScMath.40.2003.1-2.5.  Google Scholar  I. Molchanov, "Theory of Random Sets," Springer Verlag, 2005. Google Scholar  M. Muresan, Set-valued approximation of multifunctions, Studia Univ. Babes-Bolyai, Mathematica, 55 (2010), 107-148. Google Scholar  A. Papadopoulos, "Metric Spaces, Convexity and Nonpositive Curvature," 6 European Mathematical Society, 2005. Google Scholar  C. Rabut, An introduction to Schoenberg's approximation, Computers & Mathematics with Applications, 24 (1992), 149-175. doi: 10.1016/0898-1221(92)90177-J.  Google Scholar  R. Vitale, Approximation of convex set-valued functions, Journal of Approximation Theory, 26 (1979), 301-316. doi: 10.1016/0021-9045(79)90067-4.  Google Scholar  M. Zelen and N. Severo, "Probability Functions," in "Handbook of Mathematical Functions" (editors, M. Abramowitz and Stegun), Dover, New York, 5 (1964), 925-995. Google Scholar

show all references

##### References:
  Z. Artstein, Piecewise linear approximations of set-valued maps, Journal of Approximation Theory, 56 (1989), 41-47. doi: 10.1016/0021-9045(89)90131-7.  Google Scholar  R. Baier and E. Farkhi, Differences of convex compact sets in the space of directed sets. Part I: The space of directed sets, Set-Valued Analysis, 9 (2001), 217-245. doi: 10.1023/A:1012046027626.  Google Scholar  R. Baier and G. Perria, Set-valued hermite interpolation, Journal of Approximation Theory, 163 (2011), 1349-1372. doi: 10.1016/j.jat.2010.11.004.  Google Scholar  S. Bernstein, Démonstration du théoreme de weierstrass fondée sur le calcul des probabilités, Commun. Soc. Math. Kharkow, 13 (1912), 1-2. Google Scholar  D. Burago, Y. Burago, S. Ivanov and A. M. Society, "A Course in Metric Geometry," American Mathematical Society, 2001. Google Scholar  C. De Boor, "A Practical Guide to Splines," Springer Verlag, 2001. Google Scholar  R. DeVore and G. Lorentz, "Constructive Approximation," Springer, 1993. Google Scholar  N. Dyn and E. Farkhi, Spline subdivision schemes for convex compact sets, Journal of Computational and Applied Mathematics, 119 (2000), 133-144. doi: 10.1016/S0377-0427(00)00375-7.  Google Scholar  N. Dyn and E. Farkhi, Spline subdivision schemes for compact sets with metric averages, Trends in Approximation Theory, (2001), 93-102. Google Scholar  N. Dyn and E. Farkhi, Set-valued approximations with Minkowski averages-convergence and convexification rates, Numerical Functional Analysis and Optimization, 25 (2004), 363-377. doi: 10.1081/NFA-120039682.  Google Scholar  N. Dyn, E. Farkhi and A. Mokhov, Approximation of univariate set-valued functions-an overview, Serdica Math. J., 33 (2007), 495-514. Google Scholar  N. Dyn, E. Farkhi and A. Mokhov, Approximations of set-valued functions by metric linear operators, Constructive Approximation, 25 (2007), 193-209. doi: 10.1007/s00365-006-0632-9.  Google Scholar  N. Dyn and A. Mokhov, Approximations of set-valued functions based on the metric average, Rendiconti di Matematica, 26 (2006), 249-266. Google Scholar  G. Farin, "Curves and Surfaces for CAGD: A Practical Guide," Morgan Kaufmann Pub, 2002. Google Scholar  W. Feller, "An Introduction to Probability Theory and Its Applications," I, John Wiley & Sons, 1968. Google Scholar  P. Halmos, "Naive Set Theory," Springer-Verlag, New York-Heidelberg, 1974. Google Scholar  M. Kac, Une remarque sur les polynomes de m.s. bernstein, Studia Math, 7 (1938), 49-51. Google Scholar  M. Kac, Reconnaissance de priorité relative a ma note, une remarque sur les polynomes de m.s. bernstein, Studia Math, 8 (1939), 170. Google Scholar  S. Kels and N. Dyn, Subdivision schemes of sets and the approximation of set-valued functions in the symmetric difference metric, Arxiv Preprint arXiv:1111.6844, (2011). doi: 10.1007/s10208-013-9146-z. Google Scholar  K. Levasseur, A probabilistic proof of the Weierstrass approximation theorem, Amer. Math. Monthly, 91 (1984), 249-250. doi: 10.2307/2322960.  Google Scholar  P. Mathé, Approximation of holder continuous functions by Bernstein polynomials, The American Mathematical Monthly, 106 (1999), 568-574. doi: 10.2307/2589469.  Google Scholar  P. Mathé, Asymptotic constants for multivariate Bernstein polynomials, Studia Scientiarum Mathematicarum Hungarica, 40 (2003), 59-69. doi: 10.1556/SScMath.40.2003.1-2.5.  Google Scholar  I. Molchanov, "Theory of Random Sets," Springer Verlag, 2005. Google Scholar  M. Muresan, Set-valued approximation of multifunctions, Studia Univ. Babes-Bolyai, Mathematica, 55 (2010), 107-148. Google Scholar  A. Papadopoulos, "Metric Spaces, Convexity and Nonpositive Curvature," 6 European Mathematical Society, 2005. Google Scholar  C. Rabut, An introduction to Schoenberg's approximation, Computers & Mathematics with Applications, 24 (1992), 149-175. doi: 10.1016/0898-1221(92)90177-J.  Google Scholar  R. Vitale, Approximation of convex set-valued functions, Journal of Approximation Theory, 26 (1979), 301-316. doi: 10.1016/0021-9045(79)90067-4.  Google Scholar  M. Zelen and N. Severo, "Probability Functions," in "Handbook of Mathematical Functions" (editors, M. Abramowitz and Stegun), Dover, New York, 5 (1964), 925-995. Google Scholar
  Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246  Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031  Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115  Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087  Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461  Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327  Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1  Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022  Mariusz Michta. Stochastic inclusions with non-continuous set-valued operators. Conference Publications, 2009, 2009 (Special) : 548-557. doi: 10.3934/proc.2009.2009.548  Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309  Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper set-valued and fuzzy-set valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435-452. doi: 10.3934/mcrf.2015.5.435  C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519  Qi Wang, Yue Zhou. Sets of zero-difference balanced functions and their applications. Advances in Mathematics of Communications, 2014, 8 (1) : 83-101. doi: 10.3934/amc.2014.8.83  Harun Karsli. On approximation to discrete q-derivatives of functions via q-Bernstein-Schurer operators. Mathematical Foundations of Computing, 2021, 4 (1) : 15-30. doi: 10.3934/mfc.2020023  Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35  Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567  Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019  Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks & Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745  Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164  Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higher-order set-valued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223-255. doi: 10.3934/mcrf.2019012

2019 Impact Factor: 1.338