Citation: |
[1] |
A. Apte, C. K. R. T. Jones, A. M. Stuart and J. Voss, Data assimilation: Mathematical and statistical perspectives, International Journal for Numerical Methods in Fluids, 56 (2008), 1033-1046.doi: 10.1002/fld.1698. |
[2] |
A. Bennett, "Inverse Modeling of the ocean and Atmosphere," Cambridge, 2002.doi: 10.1017/CBO9780511535895. |
[3] |
K. Bergemann and S. Reich, An ensemble kalman-bucy filter for continuous data assimilation, Meteorolog. Zeitschrift, 21 (2012), 213-219.doi: 10.1127/0941-2948/2012/0307. |
[4] |
D. Blömker, K. Law, A. M. Stuart and K. C. Zygalakis, Accuracy and stability of the continuous-time 3dvar filter for the navier-stokes equation, Preprint, arXiv:1210.1594, 2012. |
[5] |
C. E. A. Brett, K. F. Lam, K. J. H. Law, D. S. McCormick, M. R. Scott and A. M. Stuart, Accuracy and stability of filters for dissipative pdes, Physica D: Nonlinear Phenomena, 245 (2013), 34-45.doi: 10.1016/j.physd.2012.11.005. |
[6] |
A. Doucet, N. De Freitas and N. Gordon, "Sequential Monte Carlo Methods in Practice," Springer Verlag, 2001. |
[7] |
G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynamics, 53 (2003), 343-367.doi: 10.1007/s10236-003-0036-9. |
[8] |
G. Evensen, "Data Assimilation: The Ensemble Kalman Filter," Springer Verlag, 2009.doi: 10.1007/978-3-642-03711-5. |
[9] |
C. Foias, M. S. Jolly, I. Kukavica and E. S. Titi, The lorenz equationas a metaphor for the navier-stokes equation, discrete and continous dynamical systems, Discrete and Continous Dynamical Systems, 7 (2001), 403-429.doi: 10.3934/dcds.2001.7.403. |
[10] |
C. Foias and G. Prodi, Sur le comportement global des solutions nonstationnaires des équations de navier-stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1-34. |
[11] |
A. C. Harvey, "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Univ Pr, 1991. |
[12] |
K. Hayden, E. Olson and E. S. Titi, Discrete data assimilation in the lorenz and 2d navier-stokes equations, Physica D: Nonlinear Phenomena, 240 (2011), 1416-1425.doi: 10.1016/j.physd.2011.04.021. |
[13] |
A. H. Jazwinski, "Stochastic Processes and Filtering Theory," Academic Pr, 1970. |
[14] |
D. A. Jones and E. S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the navier-stokes equations, Indiana University Mathematics Journal, 42 (1993), 875-888.doi: 10.1512/iumj.1993.42.42039. |
[15] |
E. Kalnay, "Atmospheric Modeling, Data Assimilation, and Predictability," Cambridge Univ. Pr., 2002.doi: 10.1017/CBO9780511802270. |
[16] |
E. Kalnay, H. Li, T. Miyoshi, S.-C. Yang and J. Ballabrera-Poy, 4DVAR or ensemble Kalman filter?, Tellus A, 59 (2008), 758-773. |
[17] |
K. J. H. Law and A. M. Stuart, Evaluating data assimilation algorithms, Monthly Weather Review, 140 (2012), 3757-3782.doi: 10.1175/MWR-D-11-00257.1. |
[18] |
A. C. Lorenc, Analysis methods for numerical weather prediction, Quart. J. R. Met. Soc., 112 (2000), 1177-1194.doi: 10.1002/qj.49711247414. |
[19] |
E. N. Lorenz, Deterministic nonperiodic flow, Atmos. J. Sci., 20 (1963), 130-141. |
[20] |
E. N. Lorenz, Predictability: A problem partly solved, in "Proc. Seminar on Predictability," 1 (1996), 1-18.doi: 10.1017/CBO9780511617652.004. |
[21] |
A. J. Majda and J. Harlim, "Filtering Complex Turbulent Systems," Cambridge University Press, 2012.doi: 10.1017/CBO9781139061308. |
[22] |
A. J. Majda, J. Harlim and B. Gershgorin, Mathematical strategies for filtering turbulent dynamical systems, Discrete and Continuous Dynamical Systems - Series A, 27 (2010), 441-486.doi: 10.3934/dcds.2010.27.441. |
[23] |
X. Mao, "Stochastic Differential Equations And Applications," Horwood, 1997.doi: 10.1533/9780857099402. |
[24] |
D. S. Oliver, A. C. Reynolds and N. Liu, "Inverse Theory for Petroleum Reservoir Characterization and History Matching," Cambridge University Press, 2008.doi: 10.1017/CBO9780511535642. |
[25] |
E. Olson and E. S. Titi, Determining modes for continuous data assimilation in 2D turbulence, Journal of Statistical Physics, 113 (2003), 799-840.doi: 10.1023/A:1027312703252. |
[26] |
D. F. Parrish and J. C. Derber, The National Meteorological Center's spectral statistical-interpolation analysis system, Monthly Weather Review, 120 (1992), 1747-1763.doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2. |
[27] |
J. C. Robinson, "Infinite-Dimensional Dynamical Systems," Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001.doi: 10.1007/978-94-010-0732-0. |
[28] |
C. Sparrow, "The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors," Springer, 1982. |
[29] |
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.doi: 10.1017/S0962492910000061. |
[30] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 68 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1997. |
[31] |
W. Tucker, A rigorous ode solver and smale's 14th problem, Journal of Foundations of Computational Mathematics, 2 (2002), 53-117. |
[32] |
P. J. Van Leeuwen, Particle filtering in geophysical systems, Monthly Weather Review, 137 (2009), 4089-4114. |