Citation: |
[1] |
A. Abdulle, W. E, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method, Acta Numerica, 21 (2012), 1-87.doi: 10.1017/S0962492912000025. |
[2] |
G. Ariel, B. Engquist, S. Kim, Y. Lee and R. Tsai, A multiscale method for highly oscillatory dynamical systems using a Poincaré map type technique, Journal of Scientific Computing, 54 (2013), 247-268.doi: 10.1007/s10915-012-9656-x. |
[3] |
G. Ariel, B. Engquist and R. Tsai, A multiscale method for highly oscillatory ordinary differential equations with resonance, Mathematics of Computation, 78 (2009), 929-956.doi: 10.1090/S0025-5718-08-02139-X. |
[4] |
G. Ariel, B. Engquist and R. Tsai, Oscillatory systems with three separated time scales analysis and computation, Numerical Analysis of Multiscale Computations, 82 (2012), 23-45.doi: 10.1007/978-3-642-21943-6_2. |
[5] |
M. Condon, A. Deaño and A. Iserles, On second-order differential equations with highly oscillatory forcing terms, Proc. R. Soc. Lond. Ser. A Math. Eng. Sci., 466 (2010), 1809-1828.doi: 10.1098/rspa.2009.0481. |
[6] |
W. E, W. Ren and E. Vanden-Eijnden, A general strategy for designing seamless multiscale methods, Journal of Computational Physics, 228 (2009), 5437-5453.doi: 10.1016/j.jcp.2009.04.030. |
[7] |
B. Engquist and Y. H. Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations, Mathematics of Computation, 74 (2005), 1707-1742.doi: 10.1090/S0025-5718-05-01745-X. |
[8] |
I. Fatkullin and E. Vanden-Eijnden, A computational strategy for multiscale systems with applications to Lorenz 96 model, Journal of Computational Physics, 200 (2004), 606-638.doi: 10.1016/j.jcp.2004.04.013. |
[9] |
E. Hairer and G. Wanner, "Solving Ordinary Differential Equations II," Springer Series in Computational Mathematics, 14, Springer Berlin Heidelberg, 1996. |
[10] |
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration," Springer Series in Computational Mathematics, 31, Springer Berlin Heidelberg, 2006. |
[11] |
M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large systems of differential equations, SIAM Journal on Scientific Computing, 19 (1998), 1552-1574.doi: 10.1137/S1064827595295337. |
[12] |
M. Hochbruck and C. Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numerische Mathematik, 83 (1999), 403-426.doi: 10.1007/s002110050456. |
[13] |
J. Kevorkian and J. D. Cole, "Perturbation Methods in Applied Mathematics," Applied Mathematical Sciences, 34, Springer New York, 1981. |
[14] |
J. Kevorkian and J. D. Cole, "Multiple Scale and Singular Perturbation Methods," Applied Mathematical Sciences, 114, Springer New York, 1996.doi: 10.1007/978-1-4612-3968-0. |
[15] |
Y. Lee and B. Engquist, Seamless multiscale methods for advection enhanced diffusion in incompressible turbulent velocity fields, preprint. |
[16] |
Y. Lee and B. Engquist, Fast integrators for several well-separated scales, preprint. |
[17] |
A. J. Majda and M. J. Grote, Mathematical test models for superparametrization in anisotropic turbulence, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 5470-5474.doi: 10.1073/pnas.0901383106. |
[18] |
G. A. Pavliotis and A. Stuart, "Multiscale Methods: Averaging and Homogenization," Texts in Applied Mathematics, 53, Springer New York, 2008. |
[19] |
J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems," Applied Mathematical Sciences, 59, Springer New York, 2007. |
[20] |
J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems," Chapman and Hall Londong and New York, 1994. |
[21] |
M. Tao, H. Owhadi and J. Marsden, Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and hamiltonian systems with hidden slow dynamics via flow averaging, Multiscale Modeling and Simulation, 8 (2010), 1269-1324.doi: 10.1137/090771648. |
[22] |
E. Vanden-Eijnden, On HMM-like integrators and projective integration methods for systems with multiple time scales, Communications in Mathematical Sciences, 5 (2007), 495-505. |