March  2014, 34(3): 1079-1097. doi: 10.3934/dcds.2014.34.1079

Variable step size multiscale methods for stiff and highly oscillatory dynamical systems

1. 

Department of Mathematics, the University of Texas at Austin, Austin, TX 78712, United States

2. 

Department of Mathematics and ICES, the University of Texas at Austin, Austin, TX 78712, United States

Received  November 2012 Revised  February 2013 Published  August 2013

We present a new numerical multiscale integrator for stiff and highly oscillatory dynamical systems. The new algorithm can be seen as an improved version of the seamless Heterogeneous Multiscale Method by E, Ren, and Vanden-Eijnden and the method FLAVORS by Tao, Owhadi, and Marsden. It approximates slowly changing quantities in the solution with higher accuracy than these other methods while maintaining the same computational complexity. To achieve higher accuracy, it uses variable mesoscopic time steps which are determined by a special function satisfying moment and regularity conditions. Detailed analytical and numerical comparison between the different methods are given.
Citation: Yoonsang Lee, Bjorn Engquist. Variable step size multiscale methods for stiff and highly oscillatory dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1079-1097. doi: 10.3934/dcds.2014.34.1079
References:
[1]

A. Abdulle, W. E, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method,, Acta Numerica, 21 (2012), 1. doi: 10.1017/S0962492912000025. Google Scholar

[2]

G. Ariel, B. Engquist, S. Kim, Y. Lee and R. Tsai, A multiscale method for highly oscillatory dynamical systems using a Poincaré map type technique,, Journal of Scientific Computing, 54 (2013), 247. doi: 10.1007/s10915-012-9656-x. Google Scholar

[3]

G. Ariel, B. Engquist and R. Tsai, A multiscale method for highly oscillatory ordinary differential equations with resonance,, Mathematics of Computation, 78 (2009), 929. doi: 10.1090/S0025-5718-08-02139-X. Google Scholar

[4]

G. Ariel, B. Engquist and R. Tsai, Oscillatory systems with three separated time scales analysis and computation,, Numerical Analysis of Multiscale Computations, 82 (2012), 23. doi: 10.1007/978-3-642-21943-6_2. Google Scholar

[5]

M. Condon, A. Deaño and A. Iserles, On second-order differential equations with highly oscillatory forcing terms,, Proc. R. Soc. Lond. Ser. A Math. Eng. Sci., 466 (2010), 1809. doi: 10.1098/rspa.2009.0481. Google Scholar

[6]

W. E, W. Ren and E. Vanden-Eijnden, A general strategy for designing seamless multiscale methods,, Journal of Computational Physics, 228 (2009), 5437. doi: 10.1016/j.jcp.2009.04.030. Google Scholar

[7]

B. Engquist and Y. H. Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations,, Mathematics of Computation, 74 (2005), 1707. doi: 10.1090/S0025-5718-05-01745-X. Google Scholar

[8]

I. Fatkullin and E. Vanden-Eijnden, A computational strategy for multiscale systems with applications to Lorenz 96 model,, Journal of Computational Physics, 200 (2004), 606. doi: 10.1016/j.jcp.2004.04.013. Google Scholar

[9]

E. Hairer and G. Wanner, "Solving Ordinary Differential Equations II,", Springer Series in Computational Mathematics, 14 (1996). Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration,", Springer Series in Computational Mathematics, 31 (2006). Google Scholar

[11]

M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large systems of differential equations,, SIAM Journal on Scientific Computing, 19 (1998), 1552. doi: 10.1137/S1064827595295337. Google Scholar

[12]

M. Hochbruck and C. Lubich, A Gautschi-type method for oscillatory second-order differential equations,, Numerische Mathematik, 83 (1999), 403. doi: 10.1007/s002110050456. Google Scholar

[13]

J. Kevorkian and J. D. Cole, "Perturbation Methods in Applied Mathematics,", Applied Mathematical Sciences, 34 (1981). Google Scholar

[14]

J. Kevorkian and J. D. Cole, "Multiple Scale and Singular Perturbation Methods,", Applied Mathematical Sciences, 114 (1996). doi: 10.1007/978-1-4612-3968-0. Google Scholar

[15]

Y. Lee and B. Engquist, Seamless multiscale methods for advection enhanced diffusion in incompressible turbulent velocity fields,, preprint., (). Google Scholar

[16]

Y. Lee and B. Engquist, Fast integrators for several well-separated scales,, preprint., (). Google Scholar

[17]

A. J. Majda and M. J. Grote, Mathematical test models for superparametrization in anisotropic turbulence,, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 5470. doi: 10.1073/pnas.0901383106. Google Scholar

[18]

G. A. Pavliotis and A. Stuart, "Multiscale Methods: Averaging and Homogenization,", Texts in Applied Mathematics, 53 (2008). Google Scholar

[19]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", Applied Mathematical Sciences, 59 (2007). Google Scholar

[20]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman and Hall Londong and New York, (1994). Google Scholar

[21]

M. Tao, H. Owhadi and J. Marsden, Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and hamiltonian systems with hidden slow dynamics via flow averaging,, Multiscale Modeling and Simulation, 8 (2010), 1269. doi: 10.1137/090771648. Google Scholar

[22]

E. Vanden-Eijnden, On HMM-like integrators and projective integration methods for systems with multiple time scales,, Communications in Mathematical Sciences, 5 (2007), 495. Google Scholar

show all references

References:
[1]

A. Abdulle, W. E, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method,, Acta Numerica, 21 (2012), 1. doi: 10.1017/S0962492912000025. Google Scholar

[2]

G. Ariel, B. Engquist, S. Kim, Y. Lee and R. Tsai, A multiscale method for highly oscillatory dynamical systems using a Poincaré map type technique,, Journal of Scientific Computing, 54 (2013), 247. doi: 10.1007/s10915-012-9656-x. Google Scholar

[3]

G. Ariel, B. Engquist and R. Tsai, A multiscale method for highly oscillatory ordinary differential equations with resonance,, Mathematics of Computation, 78 (2009), 929. doi: 10.1090/S0025-5718-08-02139-X. Google Scholar

[4]

G. Ariel, B. Engquist and R. Tsai, Oscillatory systems with three separated time scales analysis and computation,, Numerical Analysis of Multiscale Computations, 82 (2012), 23. doi: 10.1007/978-3-642-21943-6_2. Google Scholar

[5]

M. Condon, A. Deaño and A. Iserles, On second-order differential equations with highly oscillatory forcing terms,, Proc. R. Soc. Lond. Ser. A Math. Eng. Sci., 466 (2010), 1809. doi: 10.1098/rspa.2009.0481. Google Scholar

[6]

W. E, W. Ren and E. Vanden-Eijnden, A general strategy for designing seamless multiscale methods,, Journal of Computational Physics, 228 (2009), 5437. doi: 10.1016/j.jcp.2009.04.030. Google Scholar

[7]

B. Engquist and Y. H. Tsai, Heterogeneous multiscale methods for stiff ordinary differential equations,, Mathematics of Computation, 74 (2005), 1707. doi: 10.1090/S0025-5718-05-01745-X. Google Scholar

[8]

I. Fatkullin and E. Vanden-Eijnden, A computational strategy for multiscale systems with applications to Lorenz 96 model,, Journal of Computational Physics, 200 (2004), 606. doi: 10.1016/j.jcp.2004.04.013. Google Scholar

[9]

E. Hairer and G. Wanner, "Solving Ordinary Differential Equations II,", Springer Series in Computational Mathematics, 14 (1996). Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration,", Springer Series in Computational Mathematics, 31 (2006). Google Scholar

[11]

M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large systems of differential equations,, SIAM Journal on Scientific Computing, 19 (1998), 1552. doi: 10.1137/S1064827595295337. Google Scholar

[12]

M. Hochbruck and C. Lubich, A Gautschi-type method for oscillatory second-order differential equations,, Numerische Mathematik, 83 (1999), 403. doi: 10.1007/s002110050456. Google Scholar

[13]

J. Kevorkian and J. D. Cole, "Perturbation Methods in Applied Mathematics,", Applied Mathematical Sciences, 34 (1981). Google Scholar

[14]

J. Kevorkian and J. D. Cole, "Multiple Scale and Singular Perturbation Methods,", Applied Mathematical Sciences, 114 (1996). doi: 10.1007/978-1-4612-3968-0. Google Scholar

[15]

Y. Lee and B. Engquist, Seamless multiscale methods for advection enhanced diffusion in incompressible turbulent velocity fields,, preprint., (). Google Scholar

[16]

Y. Lee and B. Engquist, Fast integrators for several well-separated scales,, preprint., (). Google Scholar

[17]

A. J. Majda and M. J. Grote, Mathematical test models for superparametrization in anisotropic turbulence,, Proceedings of the National Academy of Sciences of the United States of America, 106 (2009), 5470. doi: 10.1073/pnas.0901383106. Google Scholar

[18]

G. A. Pavliotis and A. Stuart, "Multiscale Methods: Averaging and Homogenization,", Texts in Applied Mathematics, 53 (2008). Google Scholar

[19]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", Applied Mathematical Sciences, 59 (2007). Google Scholar

[20]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman and Hall Londong and New York, (1994). Google Scholar

[21]

M. Tao, H. Owhadi and J. Marsden, Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and hamiltonian systems with hidden slow dynamics via flow averaging,, Multiscale Modeling and Simulation, 8 (2010), 1269. doi: 10.1137/090771648. Google Scholar

[22]

E. Vanden-Eijnden, On HMM-like integrators and projective integration methods for systems with multiple time scales,, Communications in Mathematical Sciences, 5 (2007), 495. Google Scholar

[1]

Thierry Colin, Boniface Nkonga. Multiscale numerical method for nonlinear Maxwell equations. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 631-658. doi: 10.3934/dcdsb.2005.5.631

[2]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[3]

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347

[4]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[5]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[6]

Yahong Peng, Yaguang Wang. Reflection of highly oscillatory waves with continuous oscillatory spectra for semilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1293-1306. doi: 10.3934/dcds.2009.24.1293

[7]

Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089

[8]

Marissa Condon, Jing Gao, Arieh Iserles. On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4813-4837. doi: 10.3934/dcds.2016008

[9]

Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577

[10]

Paweł Pilarczyk. Topological-numerical approach to the existence of periodic trajectories in ODE's. Conference Publications, 2003, 2003 (Special) : 701-708. doi: 10.3934/proc.2003.2003.701

[11]

Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks & Heterogeneous Media, 2010, 5 (3) : 661-674. doi: 10.3934/nhm.2010.5.661

[12]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[13]

Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-22. doi: 10.3934/dcdss.2020073

[14]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[15]

Thomas Abballe, Grégoire Allaire, Éli Laucoin, Philippe Montarnal. Application of a coupled FV/FE multiscale method to cement media. Networks & Heterogeneous Media, 2010, 5 (3) : 603-615. doi: 10.3934/nhm.2010.5.603

[16]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[17]

Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515

[18]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[19]

Leonid Pestov, Victoria Bolgova, Oksana Kazarina. Numerical recovering of a density by the BC-method. Inverse Problems & Imaging, 2010, 4 (4) : 703-712. doi: 10.3934/ipi.2010.4.703

[20]

José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic & Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]