March  2014, 34(3): 1099-1104. doi: 10.3934/dcds.2014.34.1099

Discrete gradient methods have an energy conservation law

1. 

Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand

2. 

Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia

Received  January 2013 Revised  April 2013 Published  August 2013

We show for a variety of classes of conservative PDEs that discrete gradient methods designed to have a conserved quantity (here called energy) also have a time-discrete conservation law. The discrete conservation law has the same conserved density as the continuous conservation law, while its flux is found by replacing all derivatives of the conserved density appearing in the continuous flux by discrete gradients.
Citation: Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099
References:
[1]

T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs,, J. Phys. A, 39 (2006), 5287.  doi: 10.1088/0305-4470/39/19/S02.  Google Scholar

[2]

E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field'' method,, J. Comput. Phys., 231 (2012), 6770.  doi: 10.1016/j.jcp.2012.06.022.  Google Scholar

[3]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Sci., 6 (1996), 449.  doi: 10.1007/BF02440162.  Google Scholar

[4]

P. E. Hydon and E. L. Mansfield, A variational complex for difference equations,, Found. Comput. Math., 4 (2004), 187.  doi: 10.1007/s10208-002-0071-9.  Google Scholar

[5]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients,, Phil. Trans. Roy. Soc. A, 357 (1999), 1021.  doi: 10.1098/rsta.1999.0363.  Google Scholar

[6]

M. Oliver and C. Wulff, A-stable Runge-Kutta methods for semilinear evolution equations,, J. Funct. Anal., 263 (2012), 1981.  doi: 10.1016/j.jfa.2012.06.022.  Google Scholar

[7]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[8]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODE's numerically while preserving a first integral,, J. Phys. A, 29 (1996).  doi: 10.1088/0305-4470/29/13/006.  Google Scholar

[9]

E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben,, Math. Ann., 102 (1930), 650.  doi: 10.1007/BF01782368.  Google Scholar

[10]

B. N. Ryland, R. I. McLachlan and J. Frank, On multisymplecticity of partitioned Runge-Kutta and splitting methods,, Int. J. Comput. Math., 84 (2007), 847.  doi: 10.1080/00207160701458633.  Google Scholar

[11]

J. C. Simo and N. Tarnow, The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics,, ZAMP, 43 (1992), 757.  doi: 10.1007/BF00913408.  Google Scholar

[12]

J. Vanneste, On the derivation of fluxes for conservation laws in Hamiltonian systems,, IMA J. Appl. Math., 59 (1997), 211.  doi: 10.1093/imamat/59.2.211.  Google Scholar

show all references

References:
[1]

T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs,, J. Phys. A, 39 (2006), 5287.  doi: 10.1088/0305-4470/39/19/S02.  Google Scholar

[2]

E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field'' method,, J. Comput. Phys., 231 (2012), 6770.  doi: 10.1016/j.jcp.2012.06.022.  Google Scholar

[3]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Sci., 6 (1996), 449.  doi: 10.1007/BF02440162.  Google Scholar

[4]

P. E. Hydon and E. L. Mansfield, A variational complex for difference equations,, Found. Comput. Math., 4 (2004), 187.  doi: 10.1007/s10208-002-0071-9.  Google Scholar

[5]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients,, Phil. Trans. Roy. Soc. A, 357 (1999), 1021.  doi: 10.1098/rsta.1999.0363.  Google Scholar

[6]

M. Oliver and C. Wulff, A-stable Runge-Kutta methods for semilinear evolution equations,, J. Funct. Anal., 263 (2012), 1981.  doi: 10.1016/j.jfa.2012.06.022.  Google Scholar

[7]

G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/4/045206.  Google Scholar

[8]

G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODE's numerically while preserving a first integral,, J. Phys. A, 29 (1996).  doi: 10.1088/0305-4470/29/13/006.  Google Scholar

[9]

E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben,, Math. Ann., 102 (1930), 650.  doi: 10.1007/BF01782368.  Google Scholar

[10]

B. N. Ryland, R. I. McLachlan and J. Frank, On multisymplecticity of partitioned Runge-Kutta and splitting methods,, Int. J. Comput. Math., 84 (2007), 847.  doi: 10.1080/00207160701458633.  Google Scholar

[11]

J. C. Simo and N. Tarnow, The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics,, ZAMP, 43 (1992), 757.  doi: 10.1007/BF00913408.  Google Scholar

[12]

J. Vanneste, On the derivation of fluxes for conservation laws in Hamiltonian systems,, IMA J. Appl. Math., 59 (1997), 211.  doi: 10.1093/imamat/59.2.211.  Google Scholar

[1]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[2]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[5]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[8]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[15]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[16]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[17]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[18]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[19]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[20]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]