March  2014, 34(3): 1121-1130. doi: 10.3934/dcds.2014.34.1121

Integrability of nonholonomically coupled oscillators

1. 

Department of Mathematical Sciences, Chalmers University of Technology, Sweden

2. 

Department of Mathematics, University of Bergen, Norway

Received  December 2012 Revised  February 2013 Published  August 2013

We study a family of nonholonomic mechanical systems. These systems consist of harmonic oscillators coupled through nonholonomic constraints. The family includes the contact oscillator, which has been used as a test problem for numerical methods for nonholonomic mechanics. The systems under study constitute simple models for continuously variable transmission gearboxes.
    The main result is that each system in the family is integrable reversible with respect to the canonical reversibility map on the cotangent bundle. By using reversible Kolmogorov--Arnold--Moser theory, we then establish preservation of invariant tori for reversible perturbations. This result explains previous numerical observations, that some discretisations of the contact oscillator have favourable structure preserving properties.
Citation: Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer-Verlag, (1989).   Google Scholar

[2]

V. I. Arnold, V. Kozlov, A. I. Neishtadt and E. Khukhro, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer-Verlag, (2006).  doi: 10.1007/978-3-540-48926-9.  Google Scholar

[3]

V. I. Arnold, "Ordinary Differential Equations,", Springer-Verlag, (2006).   Google Scholar

[4]

A. M. Bloch, "Nonholonomic Mechanics and Control,", Springer-Verlag, (2003).  doi: 10.1007/b97376.  Google Scholar

[5]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[6]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,", Springer-Verlag, (2002).  doi: 10.1007/b84020.  Google Scholar

[7]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159.  doi: 10.3934/jgm.2010.2.159.  Google Scholar

[8]

S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics,, Nonlinearity, 21 (2008), 1911.  doi: 10.1088/0951-7715/21/8/009.  Google Scholar

[9]

S. J. Ferraro, D. Iglesias-Ponte and D. Martín de Diego, Numerical and geometric aspects of the nonholonomic Shake and Rattle methods,, Discrete Contin. Dyn. Syst., (2009), 220.   Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration,", Springer-Verlag, (2006).  doi: 10.1007/3-540-30666-8.  Google Scholar

[11]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/1/015205.  Google Scholar

[12]

M. Kobilarov, D. Martín de Diego and S. Ferraro, Simulating nonholonomic dynamics,, Bol. Soc. Esp. Mat. Apl. S$\vec{\e}$MA, 50 (2010), 61.   Google Scholar

[13]

M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61.  doi: 10.3934/dcdss.2010.3.61.  Google Scholar

[14]

V. V. Kozlov, On the integration theory of equations of nonholonomic mechanics,, Regul. Chaotic Dyn., 7 (2002), 161.  doi: 10.1070/RD2002v007n02ABEH000203.  Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", Springer-Verlag, (1999).  doi: 10.1007/978-0-387-21792-5.  Google Scholar

[16]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283.  doi: 10.1007/s00332-005-0698-1.  Google Scholar

[17]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263.  doi: 10.1016/j.geomphys.2011.02.015.  Google Scholar

[18]

M. B. Sevryuk, KAM-stable Hamiltonians,, J. Dynam. Control Systems, 1 (1995), 351.  doi: 10.1007/BF02269374.  Google Scholar

[19]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1998), 132.  doi: 10.1016/S0167-2789(97)00207-8.  Google Scholar

[20]

Z. Shang, KAM theorem of symplectic algorithms for Hamiltonian systems,, Numer. Math., 83 (1999), 477.  doi: 10.1007/s002110050460.  Google Scholar

[21]

Z. Shang, A note on the KAM theorem for symplectic mappings,, J. Dynam. Differential Equations, 12 (2000), 357.  doi: 10.1023/A:1009068425415.  Google Scholar

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer-Verlag, (1989).   Google Scholar

[2]

V. I. Arnold, V. Kozlov, A. I. Neishtadt and E. Khukhro, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer-Verlag, (2006).  doi: 10.1007/978-3-540-48926-9.  Google Scholar

[3]

V. I. Arnold, "Ordinary Differential Equations,", Springer-Verlag, (2006).   Google Scholar

[4]

A. M. Bloch, "Nonholonomic Mechanics and Control,", Springer-Verlag, (2003).  doi: 10.1007/b97376.  Google Scholar

[5]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[6]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,", Springer-Verlag, (2002).  doi: 10.1007/b84020.  Google Scholar

[7]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159.  doi: 10.3934/jgm.2010.2.159.  Google Scholar

[8]

S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics,, Nonlinearity, 21 (2008), 1911.  doi: 10.1088/0951-7715/21/8/009.  Google Scholar

[9]

S. J. Ferraro, D. Iglesias-Ponte and D. Martín de Diego, Numerical and geometric aspects of the nonholonomic Shake and Rattle methods,, Discrete Contin. Dyn. Syst., (2009), 220.   Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration,", Springer-Verlag, (2006).  doi: 10.1007/3-540-30666-8.  Google Scholar

[11]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/1/015205.  Google Scholar

[12]

M. Kobilarov, D. Martín de Diego and S. Ferraro, Simulating nonholonomic dynamics,, Bol. Soc. Esp. Mat. Apl. S$\vec{\e}$MA, 50 (2010), 61.   Google Scholar

[13]

M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 61.  doi: 10.3934/dcdss.2010.3.61.  Google Scholar

[14]

V. V. Kozlov, On the integration theory of equations of nonholonomic mechanics,, Regul. Chaotic Dyn., 7 (2002), 161.  doi: 10.1070/RD2002v007n02ABEH000203.  Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,", Springer-Verlag, (1999).  doi: 10.1007/978-0-387-21792-5.  Google Scholar

[16]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283.  doi: 10.1007/s00332-005-0698-1.  Google Scholar

[17]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263.  doi: 10.1016/j.geomphys.2011.02.015.  Google Scholar

[18]

M. B. Sevryuk, KAM-stable Hamiltonians,, J. Dynam. Control Systems, 1 (1995), 351.  doi: 10.1007/BF02269374.  Google Scholar

[19]

M. B. Sevryuk, The finite-dimensional reversible KAM theory,, Phys. D, 112 (1998), 132.  doi: 10.1016/S0167-2789(97)00207-8.  Google Scholar

[20]

Z. Shang, KAM theorem of symplectic algorithms for Hamiltonian systems,, Numer. Math., 83 (1999), 477.  doi: 10.1007/s002110050460.  Google Scholar

[21]

Z. Shang, A note on the KAM theorem for symplectic mappings,, J. Dynam. Differential Equations, 12 (2000), 357.  doi: 10.1023/A:1009068425415.  Google Scholar

[1]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[2]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[4]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[5]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[6]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[11]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[12]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[13]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[14]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[15]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[16]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[17]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[18]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]