\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regarding the absolute stability of Størmer-Cowell methods

Abstract / Introduction Related Papers Cited by
  • High order variants of the classical Størmer-Cowell methods are still a popular class of methods for computations in celestial mechanics. In this work we shall investigate the absolute stability of Størmer-Cowell methods close to zero, and present a characterization of the stability of methods of all orders. In particular, we show that many methods are not absolutely stable at any point in a neighborhood of the origin.
    Mathematics Subject Classification: Primary: 65L06, 70F15; Secondary: 65L20, 70M20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Dahlquist, On accuracy and unconditional stability of linear multistep methods for second order differential equations, BIT; Nordisk Tidskrift for Informationsbehandling (BIT), 18 (1978), 133-136.doi: 10.1007/BF01931689.

    [2]

    W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numerische Mathematik, 3 (1961), 381-397.doi: 10.1007/BF01386037.

    [3]

    K. Grazier, W. Newman, J. Hyman, P. Sharp and D. GoldsteinAchieving Brouwer's law with high-order Störmer multistep methods, ANZIAM J., 46 (2004/05), C786–-C804.

    [4]

    E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration illustrated by the Störmer-Verlet method, Acta Numerica, 12 (2003), 399-450.doi: 10.1017/S0962492902000144.

    [5]

    E. Hairer, S. Nørsett and G. Wanner, "Solving Ordinary Differential Equations: Nonstiff Problems, vol. 1," Springer Verlag, 1993.

    [6]

    E. Hairer and G. Wanner, "Solving Ordinary Differential Equations {II}: Stiff and Differential-Algebraic Problems, vol. 2," Springer, 2004.

    [7]

    P. Henrici, "Discrete Variable Methods in Ordinary Differential Equations, vol. 1," New York: Wiley, 1962.

    [8]

    J. Lambert, "Computational Methods in Ordinary Differential Equations," Wiley New York, 1973.

    [9]

    J. Lambert and I. Watson, Symmetric multistip methods for periodic initial value problems, IMA Journal of Applied Mathematics, 18 (1976), 189-202.doi: 10.1093/imamat/18.2.189.

    [10]

    W. I. Newman, F. Varadi, A. Y. Lee, W. M. Kaula, K. R. Grazier and J. M. Hyman, Numerical integration, Lyapunov exponents and the outer Solar System, Bulletin of the American Astronomical Society, 32 (2000), 859.

    [11]

    G. Quinlan and S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits, The Astronomical Journal, 100 (1990), 1694-1700.

    [12]

    P. Sharp, Comparisons of high order stormer and explicit Runge-kutta Nyström methods for N-body simulations of the solar system, Tech. Rep., Department of Mathematics, The University of Auckland, New Zealand, (2000).

    [13]

    E. Stiefel and D. G. Bettis, Stabilization of Cowell's method, Numerische Mathematik, 13 (1969), 154-175.doi: 10.1007/BF02163234.

    [14]

    E. Thorbergsen, "Undersøkelse av Noen Metoder for Baneproblemer," Master's thesis, Norges Tekniske Høyskole(NTH), Trondheim, Norway, 1976.

    [15]

    F. Varadi and B. Runnegar, Successive refinements in long-term integrations of planetary orbits, The Astrophysical Journal, 592 (2003), 620-630.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return