Citation: |
[1] |
M. Dahlby, B. Owren and T. Yaguchi, Preserving multiple first integrals by discrete gradients, J. Phys. A, 44 (2011), 305205, 14 pp.doi: 10.1088/1751-8113/44/30/305205. |
[2] |
W. Gautschi, "Numerical Analysis. An Introduction," Birkhäuser, Boston, 1997. |
[3] |
O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Science, 6 (1996), 449-467.doi: 10.1007/BF02440162. |
[4] |
E. Hairer, Symmetric projection methods for differential equations on manifolds, BIT, 40 (2000), 726-734.doi: 10.1023/A:1022344502818. |
[5] |
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure Preserving Algorithms for Ordinary Differential Equations," Springer Series in Computational Mathematics, 31, $2^{nd}$ edition, Springer-Verlag, Berlin, 2006. |
[6] |
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems," Springer Series in Computational Mathematics, 8, $2^{nd}$ edition, Springer-Verlag, Berlin, 1993. |
[7] |
P. Hartman, "Ordinary Differential Equations," John Wiley & Sons Inc., New York, 1964. |
[8] |
V. I. Istrăţescu, "Fixed Point Theory, an Introduction," Mathematics and its Applications, 7, D. Reidel Publishing Co., Dordrecht, Holland, 1981. |
[9] |
Toahiaki Itoh and Kanji Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, J. Comput. Phys., 76 (1988), 85-102.doi: 10.1016/0021-9991(88)90132-5. |
[10] |
Robert I. McLachlan, G. R. W. Quispel and Nicolas Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.doi: 10.1098/rsta.1999.0363. |
[11] |
R. A. Norton, D. I. McLaren, G. R. W. Quispel, A. Stern and A. Zanna, Projection methods and discrete gradient methods for preserving first integrals of ODEs, preprint, arXiv:1302.2713v1. |
[12] |
J. M. Ortega, The Newton-Kantorovich theorem, Amer. Math. Monthly, 75 (1968), 658-660.doi: 10.2307/2313800. |
[13] |
Marco Papi, On the domain of the implicit function and applications, J. Inequal. Appl., 2005 (2005), 221-234.doi: 10.1155/JIA.2005.221. |
[14] |
G. R. W. Quispel and H. W. Capel, Solving ODEs numerically while preserving a first integral, Physics Letters. A, 218 (1996), 223-228.doi: 10.1016/0375-9601(96)00403-3. |
[15] |
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045207, 7pp.doi: 10.1088/1751-8113/41/4/045206. |
[16] |
G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A, 29 (1996), L341-L349.doi: 10.1088/0305-4470/29/13/006. |