March  2014, 34(3): 1171-1182. doi: 10.3934/dcds.2014.34.1171

Periodic points on the $2$-sphere

1. 

Department of Mathematics, University of Chicago, 5734 S. University Ave, Chicago, Illinois 60637, United States

2. 

CONICET, IMAS, Universidad de Buenos Aires, Buenos Aires

Received  October 2012 Revised  March 2013 Published  August 2013

For a $C^{1}$ degree two latitude preserving endomorphism $f$ of the $2$-sphere, we show that for each $n$, $f$ has at least $2^{n}$ periodic points of period $n$.
Citation: Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171
References:
[1]

Katrin Gelfert and Christian Wolf, On the distribution of periodic orbits,, Discrete and Continuous Dynamical Systems, 36 (2010), 949.  doi: 10.3934/dcds.2010.26.949.  Google Scholar

[2]

Anatole Katok, Lyapunov Exponents, Entropy, and Periodic Points for Diffeomorphisms,, Institute des Hautes Études Scientifiques, 51 (1980), 137.   Google Scholar

[3]

Michal Misiurewicz and Feliks Przytycki, Topological entropy and degree of smooth mappings,, Bull. Acad. Pol., 25 (1977), 573.   Google Scholar

[4]

Michael Shub, All, most, dome differentiable dynamical systems,, Proceedings of the International Congress of Mathematicians, (2006), 99.   Google Scholar

[5]

Michael Shub and Dennis Sullivan, A remark on the lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.  doi: 10.1016/0040-9383(74)90009-3.  Google Scholar

[6]

Michael Shub, Alexander cocycles and dynamics,, Asterisque, (1978), 395.   Google Scholar

show all references

References:
[1]

Katrin Gelfert and Christian Wolf, On the distribution of periodic orbits,, Discrete and Continuous Dynamical Systems, 36 (2010), 949.  doi: 10.3934/dcds.2010.26.949.  Google Scholar

[2]

Anatole Katok, Lyapunov Exponents, Entropy, and Periodic Points for Diffeomorphisms,, Institute des Hautes Études Scientifiques, 51 (1980), 137.   Google Scholar

[3]

Michal Misiurewicz and Feliks Przytycki, Topological entropy and degree of smooth mappings,, Bull. Acad. Pol., 25 (1977), 573.   Google Scholar

[4]

Michael Shub, All, most, dome differentiable dynamical systems,, Proceedings of the International Congress of Mathematicians, (2006), 99.   Google Scholar

[5]

Michael Shub and Dennis Sullivan, A remark on the lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.  doi: 10.1016/0040-9383(74)90009-3.  Google Scholar

[6]

Michael Shub, Alexander cocycles and dynamics,, Asterisque, (1978), 395.   Google Scholar

[1]

Gabriele Benedetti, Kai Zehmisch. On the existence of periodic orbits for magnetic systems on the two-sphere. Journal of Modern Dynamics, 2015, 9: 141-146. doi: 10.3934/jmd.2015.9.141

[2]

Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070

[3]

Ihsan Topaloglu. On a nonlocal isoperimetric problem on the two-sphere. Communications on Pure & Applied Analysis, 2013, 12 (1) : 597-620. doi: 10.3934/cpaa.2013.12.597

[4]

Jorge Rebaza. Uniformly distributed points on the sphere. Communications on Pure & Applied Analysis, 2005, 4 (2) : 389-403. doi: 10.3934/cpaa.2005.4.389

[5]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[6]

Juan Vicente Gutiérrez-Santacreu. Two scenarios on a potential smoothness breakdown for the three-dimensional Navier–Stokes equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2593-2613. doi: 10.3934/dcds.2020142

[7]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[8]

Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381

[9]

P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677

[10]

Duraisamy Balraj, Muthaiah Marudai, Zoran D. Mitrovic, Ozgur Ege, Veeraraghavan Piramanantham. Existence of best proximity points satisfying two constraint inequalities. Electronic Research Archive, 2020, 28 (1) : 549-557. doi: 10.3934/era.2020028

[11]

Jorge Sotomayor, Ronaldo Garcia. Codimension two umbilic points on surfaces immersed in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 293-308. doi: 10.3934/dcds.2007.17.293

[12]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[13]

Li Li, Yanyan Li, Xukai Yan. Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7163-7211. doi: 10.3934/dcds.2019300

[14]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020311

[15]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[16]

K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62.

[17]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[18]

Erik I. Verriest. Generalizations of Naismith's problem: Minimal transit time between two points in a heterogenous terrian. Conference Publications, 2011, 2011 (Special) : 1413-1422. doi: 10.3934/proc.2011.2011.1413

[19]

Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107

[20]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]