March  2014, 34(3): 1183-1210. doi: 10.3934/dcds.2014.34.1183

The Landau--Kolmogorov inequality revisited

1. 

DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Received  January 2013 Revised  May 2013 Published  August 2013

We consider the Landau--Kolmogorov problem on a finite interval which is to find an exact bound for $\|f^{(k)}\|$, for $0 < k < n$, given bounds $\|f\| \le 1$ and $\|f^{(n)}\| \le \sigma$, with $\|\cdot\|$ being the max-norm on $[-1,1]$. In 1972, Karlin conjectured that this bound is attained at the end-point of the interval by a certain Zolotarev polynomial or spline, and that was proved for a number of particular values of $n$ or $\sigma$. Here, we provide a complete proof of this conjecture in the polynomial case, i.e. for $0 \le \sigma \le \sigma_n := \|T_n^{(n)}\|$, where $T_n$ is the Chebyshev polynomial of degree $n$. In addition, we prove a certain Schur-type estimate which is of independent interest.
Citation: Alexei Shadrin. The Landau--Kolmogorov inequality revisited. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1183-1210. doi: 10.3934/dcds.2014.34.1183
References:
[1]

C. K. Chui and P. W. Smith, A note on Landau's problem for bounded intervals,, Amer. Math. Monthly, 82 (1975), 927. doi: 10.2307/2318501. Google Scholar

[2]

P. Erdös and G. Szegö, On a problem of I. Schur,, Ann. of Math. (2), 43 (1942), 451. doi: 10.2307/1968803. Google Scholar

[3]

B.-O. Eriksson, Some best constants in the Landau inequality on a finite interval,, J. Approx. Theory, 94 (1998), 420. doi: 10.1006/jath.1998.3203. Google Scholar

[4]

M. Floater, Error formulas for divided difference expansions and numerical differentiation,, J. Approx. Theory, 122 (2003), 1. doi: 10.1016/S0021-9045(03)00025-X. Google Scholar

[5]

S. Karlin, Oscillatory perfect splines and related extremal problems,, in, (1976), 371. Google Scholar

[6]

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen,, Proc. London Math. Soc., 13 (1914), 43. doi: 10.1112/plms/s2-13.1.43. Google Scholar

[7]

A. P. Matorin, On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line,, Ukrain. Mat. Zh., 7 (1955), 262. Google Scholar

[8]

N. Naidenov, On an extremal problem of Kolmogorov type for functions from $W^4_\infty$([a,b]),, East J. Approx., 9 (2003), 117. Google Scholar

[9]

A. Pinkus, Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval,, J. Approx. Theory, 23 (1978), 37. doi: 10.1016/0021-9045(78)90077-1. Google Scholar

[10]

M. Sato, The Landau inequality for bounded intervals with $f^{(3)}$ finite,, J. Approx. Theory, 34 (1982), 159. doi: 10.1016/0021-9045(82)90089-2. Google Scholar

[11]

I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall,, Math. Z., 4 (1919), 271. doi: 10.1007/BF01203015. Google Scholar

[12]

A. Shadrin, Interpolation with Lagrange polynomials. A simple proof of Markov inequality and some of its generalizations,, Approx. Theory Appl., 8 (1992), 51. Google Scholar

[13]

A. Shadrin, To the Landau-Kolmogorov problem on a finite interval,, in, (1994), 192. Google Scholar

[14]

A. Shadrin, Error bounds for Lagrange interpolation,, J. Approx. Theory, 80 (1995), 25. doi: 10.1006/jath.1995.1003. Google Scholar

[15]

A. Shadrin, Twelve proofs of the Markov inequality,, in, (2004), 233. Google Scholar

[16]

A. I. Zvyagintsev, Kolmogorov's inequalities for $n=4$,, Latv. Mat. Ezhegodnik, 26 (1982), 165. Google Scholar

[17]

A. I. Zvyagintsev and A. Ya. Lepin, Kolmogorov's inequalities between the upper bounds of derivatives of functions for $n=3$,, Latv. Mat. Ezhegodnik, 26 (1982), 176. Google Scholar

show all references

References:
[1]

C. K. Chui and P. W. Smith, A note on Landau's problem for bounded intervals,, Amer. Math. Monthly, 82 (1975), 927. doi: 10.2307/2318501. Google Scholar

[2]

P. Erdös and G. Szegö, On a problem of I. Schur,, Ann. of Math. (2), 43 (1942), 451. doi: 10.2307/1968803. Google Scholar

[3]

B.-O. Eriksson, Some best constants in the Landau inequality on a finite interval,, J. Approx. Theory, 94 (1998), 420. doi: 10.1006/jath.1998.3203. Google Scholar

[4]

M. Floater, Error formulas for divided difference expansions and numerical differentiation,, J. Approx. Theory, 122 (2003), 1. doi: 10.1016/S0021-9045(03)00025-X. Google Scholar

[5]

S. Karlin, Oscillatory perfect splines and related extremal problems,, in, (1976), 371. Google Scholar

[6]

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen,, Proc. London Math. Soc., 13 (1914), 43. doi: 10.1112/plms/s2-13.1.43. Google Scholar

[7]

A. P. Matorin, On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line,, Ukrain. Mat. Zh., 7 (1955), 262. Google Scholar

[8]

N. Naidenov, On an extremal problem of Kolmogorov type for functions from $W^4_\infty$([a,b]),, East J. Approx., 9 (2003), 117. Google Scholar

[9]

A. Pinkus, Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval,, J. Approx. Theory, 23 (1978), 37. doi: 10.1016/0021-9045(78)90077-1. Google Scholar

[10]

M. Sato, The Landau inequality for bounded intervals with $f^{(3)}$ finite,, J. Approx. Theory, 34 (1982), 159. doi: 10.1016/0021-9045(82)90089-2. Google Scholar

[11]

I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall,, Math. Z., 4 (1919), 271. doi: 10.1007/BF01203015. Google Scholar

[12]

A. Shadrin, Interpolation with Lagrange polynomials. A simple proof of Markov inequality and some of its generalizations,, Approx. Theory Appl., 8 (1992), 51. Google Scholar

[13]

A. Shadrin, To the Landau-Kolmogorov problem on a finite interval,, in, (1994), 192. Google Scholar

[14]

A. Shadrin, Error bounds for Lagrange interpolation,, J. Approx. Theory, 80 (1995), 25. doi: 10.1006/jath.1995.1003. Google Scholar

[15]

A. Shadrin, Twelve proofs of the Markov inequality,, in, (2004), 233. Google Scholar

[16]

A. I. Zvyagintsev, Kolmogorov's inequalities for $n=4$,, Latv. Mat. Ezhegodnik, 26 (1982), 165. Google Scholar

[17]

A. I. Zvyagintsev and A. Ya. Lepin, Kolmogorov's inequalities between the upper bounds of derivatives of functions for $n=3$,, Latv. Mat. Ezhegodnik, 26 (1982), 176. Google Scholar

[1]

Gyula Csató, Bernard Dacorogna. An identity involving exterior derivatives and applications to Gaffney inequality. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 531-544. doi: 10.3934/dcdss.2012.5.531

[2]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[3]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[4]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[5]

Easton Li Xu, Weiping Shang, Guangyue Han. Network encoding complexity: Exact values, bounds, and inequalities. Advances in Mathematics of Communications, 2017, 11 (3) : 567-594. doi: 10.3934/amc.2017044

[6]

Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006

[7]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[8]

Piotr Pokora. The orbifold Langer-Miyaoka-Yau Inequality and Hirzebruch-type inequalities. Electronic Research Announcements, 2017, 24: 21-27. doi: 10.3934/era.2017.24.003

[9]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

[10]

Ze Li, Lifeng Zhao. Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 607-638. doi: 10.3934/dcds.2019025

[11]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[12]

Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465

[13]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[14]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[15]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[16]

Ezequiel R. Barbosa, Marcos Montenegro. On the geometric dependence of Riemannian Sobolev best constants. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1759-1777. doi: 10.3934/cpaa.2009.8.1759

[17]

Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. On the number of weakly Noetherian constants of motion of nonholonomic systems. Journal of Geometric Mechanics, 2009, 1 (4) : 389-416. doi: 10.3934/jgm.2009.1.389

[18]

Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002

[19]

K. Q. Lan, G. C. Yang. Optimal constants for two point boundary value problems. Conference Publications, 2007, 2007 (Special) : 624-633. doi: 10.3934/proc.2007.2007.624

[20]

Michael Boshernitzan, Máté Wierdl. Almost-everywhere convergence and polynomials. Journal of Modern Dynamics, 2008, 2 (3) : 465-470. doi: 10.3934/jmd.2008.2.465

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]