March  2014, 34(3): 1183-1210. doi: 10.3934/dcds.2014.34.1183

The Landau--Kolmogorov inequality revisited

1. 

DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Received  January 2013 Revised  May 2013 Published  August 2013

We consider the Landau--Kolmogorov problem on a finite interval which is to find an exact bound for $\|f^{(k)}\|$, for $0 < k < n$, given bounds $\|f\| \le 1$ and $\|f^{(n)}\| \le \sigma$, with $\|\cdot\|$ being the max-norm on $[-1,1]$. In 1972, Karlin conjectured that this bound is attained at the end-point of the interval by a certain Zolotarev polynomial or spline, and that was proved for a number of particular values of $n$ or $\sigma$. Here, we provide a complete proof of this conjecture in the polynomial case, i.e. for $0 \le \sigma \le \sigma_n := \|T_n^{(n)}\|$, where $T_n$ is the Chebyshev polynomial of degree $n$. In addition, we prove a certain Schur-type estimate which is of independent interest.
Citation: Alexei Shadrin. The Landau--Kolmogorov inequality revisited. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1183-1210. doi: 10.3934/dcds.2014.34.1183
References:
[1]

C. K. Chui and P. W. Smith, A note on Landau's problem for bounded intervals, Amer. Math. Monthly, 82 (1975), 927-929. doi: 10.2307/2318501.  Google Scholar

[2]

P. Erdös and G. Szegö, On a problem of I. Schur, Ann. of Math. (2), 43 (1942), 451-470. doi: 10.2307/1968803.  Google Scholar

[3]

B.-O. Eriksson, Some best constants in the Landau inequality on a finite interval, J. Approx. Theory, 94 (1998), 420-454. doi: 10.1006/jath.1998.3203.  Google Scholar

[4]

M. Floater, Error formulas for divided difference expansions and numerical differentiation, J. Approx. Theory, 122 (2003), 1-9. doi: 10.1016/S0021-9045(03)00025-X.  Google Scholar

[5]

S. Karlin, Oscillatory perfect splines and related extremal problems, in "Studies in Spline Functions and Approximation Theory", 371-460. Academic Press, New York, (1976).  Google Scholar

[6]

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc., 13 (1914), 43-39. doi: 10.1112/plms/s2-13.1.43.  Google Scholar

[7]

A. P. Matorin, On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line, Ukrain. Mat. Zh., 7 (1955), 262-266 = Amer. Math. Soc. Transl. (2), 8 (1958), 13-17.  Google Scholar

[8]

N. Naidenov, On an extremal problem of Kolmogorov type for functions from $W^4_\infty$([a,b]), East J. Approx., 9 (2003), 117-135.  Google Scholar

[9]

A. Pinkus, Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval, J. Approx. Theory, 23 (1978), 37-64. doi: 10.1016/0021-9045(78)90077-1.  Google Scholar

[10]

M. Sato, The Landau inequality for bounded intervals with $f^{(3)}$ finite, J. Approx. Theory, 34 (1982), 159-166. doi: 10.1016/0021-9045(82)90089-2.  Google Scholar

[11]

I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z., 4 (1919), 271-287. doi: 10.1007/BF01203015.  Google Scholar

[12]

A. Shadrin, Interpolation with Lagrange polynomials. A simple proof of Markov inequality and some of its generalizations, Approx. Theory Appl., 8 (1992), 51-61.  Google Scholar

[13]

A. Shadrin, To the Landau-Kolmogorov problem on a finite interval, in "Open Problems in Approximation Theory" (Ed. B. Bojanov), 192-204, SCT Publishing, Singapore, (1994). Google Scholar

[14]

A. Shadrin, Error bounds for Lagrange interpolation, J. Approx. Theory, 80 (1995), 25-49. doi: 10.1006/jath.1995.1003.  Google Scholar

[15]

A. Shadrin, Twelve proofs of the Markov inequality, in "Approximation Theory: A Volume Dedicated to Borislav Bojanov" (Eds. G. Nikolov et al), 233-298, Prof. M. Drinov Acad. Publ. House, Sofia, (2004).  Google Scholar

[16]

A. I. Zvyagintsev, Kolmogorov's inequalities for $n=4$, Latv. Mat. Ezhegodnik, 26 (1982), 165-175 (in Russian).  Google Scholar

[17]

A. I. Zvyagintsev and A. Ya. Lepin, Kolmogorov's inequalities between the upper bounds of derivatives of functions for $n=3$, Latv. Mat. Ezhegodnik, 26 (1982), 176-181 (in Russian).  Google Scholar

show all references

References:
[1]

C. K. Chui and P. W. Smith, A note on Landau's problem for bounded intervals, Amer. Math. Monthly, 82 (1975), 927-929. doi: 10.2307/2318501.  Google Scholar

[2]

P. Erdös and G. Szegö, On a problem of I. Schur, Ann. of Math. (2), 43 (1942), 451-470. doi: 10.2307/1968803.  Google Scholar

[3]

B.-O. Eriksson, Some best constants in the Landau inequality on a finite interval, J. Approx. Theory, 94 (1998), 420-454. doi: 10.1006/jath.1998.3203.  Google Scholar

[4]

M. Floater, Error formulas for divided difference expansions and numerical differentiation, J. Approx. Theory, 122 (2003), 1-9. doi: 10.1016/S0021-9045(03)00025-X.  Google Scholar

[5]

S. Karlin, Oscillatory perfect splines and related extremal problems, in "Studies in Spline Functions and Approximation Theory", 371-460. Academic Press, New York, (1976).  Google Scholar

[6]

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc., 13 (1914), 43-39. doi: 10.1112/plms/s2-13.1.43.  Google Scholar

[7]

A. P. Matorin, On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line, Ukrain. Mat. Zh., 7 (1955), 262-266 = Amer. Math. Soc. Transl. (2), 8 (1958), 13-17.  Google Scholar

[8]

N. Naidenov, On an extremal problem of Kolmogorov type for functions from $W^4_\infty$([a,b]), East J. Approx., 9 (2003), 117-135.  Google Scholar

[9]

A. Pinkus, Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval, J. Approx. Theory, 23 (1978), 37-64. doi: 10.1016/0021-9045(78)90077-1.  Google Scholar

[10]

M. Sato, The Landau inequality for bounded intervals with $f^{(3)}$ finite, J. Approx. Theory, 34 (1982), 159-166. doi: 10.1016/0021-9045(82)90089-2.  Google Scholar

[11]

I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall, Math. Z., 4 (1919), 271-287. doi: 10.1007/BF01203015.  Google Scholar

[12]

A. Shadrin, Interpolation with Lagrange polynomials. A simple proof of Markov inequality and some of its generalizations, Approx. Theory Appl., 8 (1992), 51-61.  Google Scholar

[13]

A. Shadrin, To the Landau-Kolmogorov problem on a finite interval, in "Open Problems in Approximation Theory" (Ed. B. Bojanov), 192-204, SCT Publishing, Singapore, (1994). Google Scholar

[14]

A. Shadrin, Error bounds for Lagrange interpolation, J. Approx. Theory, 80 (1995), 25-49. doi: 10.1006/jath.1995.1003.  Google Scholar

[15]

A. Shadrin, Twelve proofs of the Markov inequality, in "Approximation Theory: A Volume Dedicated to Borislav Bojanov" (Eds. G. Nikolov et al), 233-298, Prof. M. Drinov Acad. Publ. House, Sofia, (2004).  Google Scholar

[16]

A. I. Zvyagintsev, Kolmogorov's inequalities for $n=4$, Latv. Mat. Ezhegodnik, 26 (1982), 165-175 (in Russian).  Google Scholar

[17]

A. I. Zvyagintsev and A. Ya. Lepin, Kolmogorov's inequalities between the upper bounds of derivatives of functions for $n=3$, Latv. Mat. Ezhegodnik, 26 (1982), 176-181 (in Russian).  Google Scholar

[1]

Gyula Csató, Bernard Dacorogna. An identity involving exterior derivatives and applications to Gaffney inequality. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 531-544. doi: 10.3934/dcdss.2012.5.531

[2]

Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2335-2355. doi: 10.3934/dcdss.2020212

[3]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[4]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[5]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[6]

Easton Li Xu, Weiping Shang, Guangyue Han. Network encoding complexity: Exact values, bounds, and inequalities. Advances in Mathematics of Communications, 2017, 11 (3) : 567-594. doi: 10.3934/amc.2017044

[7]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021021

[8]

Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006

[9]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[10]

Piotr Pokora. The orbifold Langer-Miyaoka-Yau Inequality and Hirzebruch-type inequalities. Electronic Research Announcements, 2017, 24: 21-27. doi: 10.3934/era.2017.24.003

[11]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[12]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

[13]

Ze Li, Lifeng Zhao. Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 607-638. doi: 10.3934/dcds.2019025

[14]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[15]

Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465

[16]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[17]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109

[18]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021168

[19]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021046

[20]

Gianluca Gorni, Gaetano Zampieri. Lagrangian dynamics by nonlocal constants of motion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2751-2759. doi: 10.3934/dcdss.2020216

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]