March  2014, 34(3): 1183-1210. doi: 10.3934/dcds.2014.34.1183

The Landau--Kolmogorov inequality revisited

1. 

DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Received  January 2013 Revised  May 2013 Published  August 2013

We consider the Landau--Kolmogorov problem on a finite interval which is to find an exact bound for $\|f^{(k)}\|$, for $0 < k < n$, given bounds $\|f\| \le 1$ and $\|f^{(n)}\| \le \sigma$, with $\|\cdot\|$ being the max-norm on $[-1,1]$. In 1972, Karlin conjectured that this bound is attained at the end-point of the interval by a certain Zolotarev polynomial or spline, and that was proved for a number of particular values of $n$ or $\sigma$. Here, we provide a complete proof of this conjecture in the polynomial case, i.e. for $0 \le \sigma \le \sigma_n := \|T_n^{(n)}\|$, where $T_n$ is the Chebyshev polynomial of degree $n$. In addition, we prove a certain Schur-type estimate which is of independent interest.
Citation: Alexei Shadrin. The Landau--Kolmogorov inequality revisited. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1183-1210. doi: 10.3934/dcds.2014.34.1183
References:
[1]

C. K. Chui and P. W. Smith, A note on Landau's problem for bounded intervals,, Amer. Math. Monthly, 82 (1975), 927. doi: 10.2307/2318501. Google Scholar

[2]

P. Erdös and G. Szegö, On a problem of I. Schur,, Ann. of Math. (2), 43 (1942), 451. doi: 10.2307/1968803. Google Scholar

[3]

B.-O. Eriksson, Some best constants in the Landau inequality on a finite interval,, J. Approx. Theory, 94 (1998), 420. doi: 10.1006/jath.1998.3203. Google Scholar

[4]

M. Floater, Error formulas for divided difference expansions and numerical differentiation,, J. Approx. Theory, 122 (2003), 1. doi: 10.1016/S0021-9045(03)00025-X. Google Scholar

[5]

S. Karlin, Oscillatory perfect splines and related extremal problems,, in, (1976), 371. Google Scholar

[6]

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen,, Proc. London Math. Soc., 13 (1914), 43. doi: 10.1112/plms/s2-13.1.43. Google Scholar

[7]

A. P. Matorin, On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line,, Ukrain. Mat. Zh., 7 (1955), 262. Google Scholar

[8]

N. Naidenov, On an extremal problem of Kolmogorov type for functions from $W^4_\infty$([a,b]),, East J. Approx., 9 (2003), 117. Google Scholar

[9]

A. Pinkus, Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval,, J. Approx. Theory, 23 (1978), 37. doi: 10.1016/0021-9045(78)90077-1. Google Scholar

[10]

M. Sato, The Landau inequality for bounded intervals with $f^{(3)}$ finite,, J. Approx. Theory, 34 (1982), 159. doi: 10.1016/0021-9045(82)90089-2. Google Scholar

[11]

I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall,, Math. Z., 4 (1919), 271. doi: 10.1007/BF01203015. Google Scholar

[12]

A. Shadrin, Interpolation with Lagrange polynomials. A simple proof of Markov inequality and some of its generalizations,, Approx. Theory Appl., 8 (1992), 51. Google Scholar

[13]

A. Shadrin, To the Landau-Kolmogorov problem on a finite interval,, in, (1994), 192. Google Scholar

[14]

A. Shadrin, Error bounds for Lagrange interpolation,, J. Approx. Theory, 80 (1995), 25. doi: 10.1006/jath.1995.1003. Google Scholar

[15]

A. Shadrin, Twelve proofs of the Markov inequality,, in, (2004), 233. Google Scholar

[16]

A. I. Zvyagintsev, Kolmogorov's inequalities for $n=4$,, Latv. Mat. Ezhegodnik, 26 (1982), 165. Google Scholar

[17]

A. I. Zvyagintsev and A. Ya. Lepin, Kolmogorov's inequalities between the upper bounds of derivatives of functions for $n=3$,, Latv. Mat. Ezhegodnik, 26 (1982), 176. Google Scholar

show all references

References:
[1]

C. K. Chui and P. W. Smith, A note on Landau's problem for bounded intervals,, Amer. Math. Monthly, 82 (1975), 927. doi: 10.2307/2318501. Google Scholar

[2]

P. Erdös and G. Szegö, On a problem of I. Schur,, Ann. of Math. (2), 43 (1942), 451. doi: 10.2307/1968803. Google Scholar

[3]

B.-O. Eriksson, Some best constants in the Landau inequality on a finite interval,, J. Approx. Theory, 94 (1998), 420. doi: 10.1006/jath.1998.3203. Google Scholar

[4]

M. Floater, Error formulas for divided difference expansions and numerical differentiation,, J. Approx. Theory, 122 (2003), 1. doi: 10.1016/S0021-9045(03)00025-X. Google Scholar

[5]

S. Karlin, Oscillatory perfect splines and related extremal problems,, in, (1976), 371. Google Scholar

[6]

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen,, Proc. London Math. Soc., 13 (1914), 43. doi: 10.1112/plms/s2-13.1.43. Google Scholar

[7]

A. P. Matorin, On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line,, Ukrain. Mat. Zh., 7 (1955), 262. Google Scholar

[8]

N. Naidenov, On an extremal problem of Kolmogorov type for functions from $W^4_\infty$([a,b]),, East J. Approx., 9 (2003), 117. Google Scholar

[9]

A. Pinkus, Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval,, J. Approx. Theory, 23 (1978), 37. doi: 10.1016/0021-9045(78)90077-1. Google Scholar

[10]

M. Sato, The Landau inequality for bounded intervals with $f^{(3)}$ finite,, J. Approx. Theory, 34 (1982), 159. doi: 10.1016/0021-9045(82)90089-2. Google Scholar

[11]

I. Schur, Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall,, Math. Z., 4 (1919), 271. doi: 10.1007/BF01203015. Google Scholar

[12]

A. Shadrin, Interpolation with Lagrange polynomials. A simple proof of Markov inequality and some of its generalizations,, Approx. Theory Appl., 8 (1992), 51. Google Scholar

[13]

A. Shadrin, To the Landau-Kolmogorov problem on a finite interval,, in, (1994), 192. Google Scholar

[14]

A. Shadrin, Error bounds for Lagrange interpolation,, J. Approx. Theory, 80 (1995), 25. doi: 10.1006/jath.1995.1003. Google Scholar

[15]

A. Shadrin, Twelve proofs of the Markov inequality,, in, (2004), 233. Google Scholar

[16]

A. I. Zvyagintsev, Kolmogorov's inequalities for $n=4$,, Latv. Mat. Ezhegodnik, 26 (1982), 165. Google Scholar

[17]

A. I. Zvyagintsev and A. Ya. Lepin, Kolmogorov's inequalities between the upper bounds of derivatives of functions for $n=3$,, Latv. Mat. Ezhegodnik, 26 (1982), 176. Google Scholar

[1]

Gyula Csató, Bernard Dacorogna. An identity involving exterior derivatives and applications to Gaffney inequality. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 531-544. doi: 10.3934/dcdss.2012.5.531

[2]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[3]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure & Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[4]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[5]

Easton Li Xu, Weiping Shang, Guangyue Han. Network encoding complexity: Exact values, bounds, and inequalities. Advances in Mathematics of Communications, 2017, 11 (3) : 567-594. doi: 10.3934/amc.2017044

[6]

Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006

[7]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[8]

Piotr Pokora. The orbifold Langer-Miyaoka-Yau Inequality and Hirzebruch-type inequalities. Electronic Research Announcements, 2017, 24: 21-27. doi: 10.3934/era.2017.24.003

[9]

Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365

[10]

Ze Li, Lifeng Zhao. Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 607-638. doi: 10.3934/dcds.2019025

[11]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[12]

Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465

[13]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020109

[14]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[15]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[16]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[17]

Ezequiel R. Barbosa, Marcos Montenegro. On the geometric dependence of Riemannian Sobolev best constants. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1759-1777. doi: 10.3934/cpaa.2009.8.1759

[18]

Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. On the number of weakly Noetherian constants of motion of nonholonomic systems. Journal of Geometric Mechanics, 2009, 1 (4) : 389-416. doi: 10.3934/jgm.2009.1.389

[19]

Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002

[20]

K. Q. Lan, G. C. Yang. Optimal constants for two point boundary value problems. Conference Publications, 2007, 2007 (Special) : 624-633. doi: 10.3934/proc.2007.2007.624

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]