Citation: |
[1] |
F. Berthelin and A. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal., 36 (2005), 1807-1835.doi: 10.1137/S0036141003431554. |
[2] |
N. Burq, Global Strichartz estimates for nontrapping geometries: About an article by H. F. Smith and C. D. Sogge: "Global Strichartz estimates for nontrapping perturbations of the Laplacian,'' Comm. Partial Differential Equations, 28 (2003), 1675-1683.doi: 10.1081/PDE-120024528. |
[3] |
M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal., 179 (2001), 409-425.doi: 10.1006/jfan.2000.3687. |
[4] |
C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179.doi: 10.1007/BF00250353. |
[5] |
R. Danchin, Low Mach number limit for viscous compressible flows, M2AN Math. Model Numer. Anal., 39 (2005), 459-475.doi: 10.1051/m2an:2005019. |
[6] |
Y. Dermenjian and J.-C. Guillot, Scattering of elastic waves in a perturbed isotropic half space with a free boundary. The limiting absorption principle, Math. Methods Appl. Sci., 10 (1988), 87-124.doi: 10.1002/mma.1670100202. |
[7] |
B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Commun. Partial Differential Equations, 22 (1997), 977-1008.doi: 10.1080/03605309708821291. |
[8] |
B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 266 (2006), 595-629.doi: 10.1007/s00220-006-0052-y. |
[9] |
J. Edward and D. Pravica, Bounds on resonances for the Laplacian on perturbations of half-space, SIAM J. Math. Anal., 30 (1999), 1175-1184.doi: 10.1137/S003614109733172X. |
[10] |
D. M. Èĭdus, The principle of limiting amplitude, (in Russian) Usp. Mat. Nauk, 24 (1969), 91-156. |
[11] |
E. Feireisl, Incompressible limits and propagation of acoustic waves in large domains with boundaries, Commun. Math. Phys., 294 (2010), 73-95.doi: 10.1007/s00220-009-0954-6. |
[12] |
E. Feireisl, Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions, Commun. Partial Differential Equations, 36 (2011), 1778-1796.doi: 10.1080/03605302.2011.602168. |
[13] |
E. Feireisl, Low Mach number limits of compressible rotating fluids, J. Math. Fluid Mechanics, 14 (2012), 61-78.doi: 10.1007/s00021-010-0043-9. |
[14] |
E. Feireisl and A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system, Arch. Rational Mech. Anal., 204 (2012), 683-706.doi: 10.1007/s00205-011-0490-3. |
[15] |
E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids, J. Math. Fluid Mech., 3 (2001), 358-392.doi: 10.1007/PL00000976. |
[16] |
E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60 (2011), 611-631.doi: 10.1512/iumj.2011.60.4406. |
[17] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. I," Springer-Verlag, New York, 1994. |
[18] |
I. Gallagher, Résultats récents sur la limite incompressible, Séminaire Bourbaki. Vol. 2003/2004, Astérisque, Exp. No. 926, vii, (2005), 29-57. |
[19] |
P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.doi: 10.1007/s00021-009-0006-1. |
[20] |
X. P. Hu and D. H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272-1294.doi: 10.1137/080723983. |
[21] |
S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.doi: 10.1007/s00220-010-0992-0. |
[22] |
S. Jiang, Q. Ju and F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553.doi: 10.1137/100785168. |
[23] |
T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal., 25 (1967), 188-200. |
[24] |
T. Kato and C. Y. Lai, Nonlinear evolution equations and the Euler flow, J. Funct. Anal., 56 (1984), 15-28.doi: 10.1016/0022-1236(84)90024-7. |
[25] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. |
[26] |
S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), 481-524.doi: 10.1002/cpa.3160340405. |
[27] |
H. Kozono, Weak and classical solutions of the two-dimensional magnetohydrodynamic equations, Tohoku Math. J. (2), 41 (1989), 471-488.doi: 10.2748/tmj/1178227774. |
[28] |
P. Kukučka, Singular limits of the equations of magnetohydrodynamics, J. Math. Fluid Mech., 13 (2011), 173-189.doi: 10.1007/s00021-009-0007-0. |
[29] |
Y.-S. Kwon and K. Trivisa, On the incompressible limits for the full magnetohydrodynamics flows, J. Differential Equations, 251 (2011), 1990-2023.doi: 10.1016/j.jde.2011.04.016. |
[30] |
P.-L. Lions, "Mathematical Topics in Fluid Dynamics. Vol. 2. Compressible Models," Oxford Lecture Series in Mathematics and its Applications, 10, Oxford Science Publication, The Clarendon Press, Oxford University Press, New York, 1998. |
[31] |
P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl. (9), 77 (1998), 585-627.doi: 10.1016/S0021-7824(98)80139-6. |
[32] |
N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 199-224.doi: 10.1016/S0294-1449(00)00123-2. |
[33] |
N. Masmoudi, Examples of singular limits in hydrodynamics, in "Handbook of Differential Equations: Evolutionary Equations. Vol. III" (eds. C. Dafermos and E. Feireisl), Elsevier/North-Holland, Amsterdam, 2007.doi: 10.1016/S1874-5717(07)80006-5. |
[34] |
S. Schochet, The mathematical theory of low Mach number flows, M2ANMath. Model Numer. Anal., 39 (2005), 441-458.doi: 10.1051/m2an:2005017. |
[35] |
P. Secchi, On the equations of ideal incompressible magnetohydrodynamics, Rend. Sem. Univ. Padova, 90 (1993), 103-119. |
[36] |
H. F. Smith and C. D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations, 25 (2000), 2171-2183.doi: 10.1080/03605300008821581. |
[37] |
R. S. Strichartz, A priori estimates for the wave equation and some applications, J. Functional Analysis, 5 (1970), 218-235. |