March  2014, 34(3): 1229-1249. doi: 10.3934/dcds.2014.34.1229

Generating functions and volume preserving mappings

1. 

Department of Mathematics, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway, Norway

Received  November 2012 Revised  February 2013 Published  August 2013

In this paper, we study generating forms and generating functions for volume preserving mappings in $\mathbf{R}^n$. We derive some parametric classes of volume preserving numerical schemes for divergence free vector fields. In passing, by extension of the Poincaré generating function and a change of variables, we obtained symplectic equivalent of the theta-method for differential equations, which includes the implicit midpoint rule and symplectic Euler A and B methods as special cases.
Citation: Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229
References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer, (1989).   Google Scholar

[2]

M. M. Carroll, A representation theorem for volume preserving transformations,, J. International Journal of Non-Linear Mechanics, 39 (2004), 219.  doi: 10.1016/S0020-7462(02)00167-1.  Google Scholar

[3]

P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems,, IMA Journal of Numerical Analysis, 27 (2007).  doi: 10.1093/imanum/drl039.  Google Scholar

[4]

K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry,, J. Comput. Math, 4 (1986), 279.   Google Scholar

[5]

K. Feng and Z.-J Shang, Volume-preserving algorithms for source-free dynamical systems,, Numerische Mathematik, 71 (1995), 451.  doi: 10.1007/s002110050153.  Google Scholar

[6]

K. Feng and D.-L Wang, Dynamical systems and geometric construction of algorithms,, Contemporary Mathematics, 163 (1994), 1.  doi: 10.1090/conm/163/01547.  Google Scholar

[7]

K. Feng, H. M. Wu, M.-Z. Qin and D.-L. Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions,, J. Comp. Math., 7 (1989), 71.   Google Scholar

[8]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,", Springer, (2006).   Google Scholar

[9]

A. Iserles, G. R. W. Quispel and P. S. P. Tse, B-series methods cannot be volume-reserving,, BIT Numerical Mathematics, 47 (2007), 351.  doi: 10.1007/s10543-006-0114-8.  Google Scholar

[10]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[11]

H. E. Lomeli and J. D. Meiss, Generating forms for exact volume preserving maps,, Discrete and Continuous Dynamical Systems serie S, 2 (2009), 361.  doi: 10.3934/dcdss.2009.2.361.  Google Scholar

[12]

R. I. McLachlan and G. R. W. Quispel, Splitting methods,, Acta Numerica, 11 (2002), 341.  doi: 10.1017/S0962492902000053.  Google Scholar

[13]

J. Moser, "Notes on Dynamical System,", Courant Lecture Notes in Mathematics, (2005).   Google Scholar

[14]

J. Moser and A. P. Veselov, Discrete version of some classical integrable systems and factorization of matrix polynomials,, Commun. Math. Phys., 139 (1991), 217.  doi: 10.1007/BF02352494.  Google Scholar

[15]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman & Hall, (1994).   Google Scholar

[16]

Z.-J Shang, Volume-preserving maps, source-free and their local structures,, J. Phys. A: Math. Gen., 39 (2006), 5601.  doi: 10.1088/0305-4470/39/19/S16.  Google Scholar

[17]

Z.-J Shang, "Generating Functions for Volume Preserving Mapping with Applications I: Basic Theory,", China/Korea Joint Seminar: Dynamical Systems and Their Application, ().   Google Scholar

[18]

Z.-J Shang, Construction of volume preserving difference schemes for source-free systems via generating function,, Journal of Computational Mathematics, 12 (1994), 265.   Google Scholar

[19]

A. Weinstein, The invariance of Poincaré generating function for canonical transformations,, Inventiones math., 16 (1972), 202.  doi: 10.1007/BF01425493.  Google Scholar

[20]

H. Weyl, The method of orthogonal projection in potential theory,, Duke Math. J., 7 (1940), 411.  doi: 10.1215/S0012-7094-40-00725-6.  Google Scholar

[21]

H. Xue, O. Verdier and A. Zanna, Discrete Legendre transformation and volume preserving generating forms,, In Preparation, (2013).   Google Scholar

[22]

H. Xue and A. Zanna, Explicit volume preserving splitting methods for polynomial divergence-free vector fields,, BIT Numerical Mathematics, 53 (2013), 265.  doi: 10.1007/s10543-012-0394-0.  Google Scholar

show all references

References:
[1]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer, (1989).   Google Scholar

[2]

M. M. Carroll, A representation theorem for volume preserving transformations,, J. International Journal of Non-Linear Mechanics, 39 (2004), 219.  doi: 10.1016/S0020-7462(02)00167-1.  Google Scholar

[3]

P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems,, IMA Journal of Numerical Analysis, 27 (2007).  doi: 10.1093/imanum/drl039.  Google Scholar

[4]

K. Feng, Difference schemes for Hamiltonian formalism and symplectic geometry,, J. Comput. Math, 4 (1986), 279.   Google Scholar

[5]

K. Feng and Z.-J Shang, Volume-preserving algorithms for source-free dynamical systems,, Numerische Mathematik, 71 (1995), 451.  doi: 10.1007/s002110050153.  Google Scholar

[6]

K. Feng and D.-L Wang, Dynamical systems and geometric construction of algorithms,, Contemporary Mathematics, 163 (1994), 1.  doi: 10.1090/conm/163/01547.  Google Scholar

[7]

K. Feng, H. M. Wu, M.-Z. Qin and D.-L. Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions,, J. Comp. Math., 7 (1989), 71.   Google Scholar

[8]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations,", Springer, (2006).   Google Scholar

[9]

A. Iserles, G. R. W. Quispel and P. S. P. Tse, B-series methods cannot be volume-reserving,, BIT Numerical Mathematics, 47 (2007), 351.  doi: 10.1007/s10543-006-0114-8.  Google Scholar

[10]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[11]

H. E. Lomeli and J. D. Meiss, Generating forms for exact volume preserving maps,, Discrete and Continuous Dynamical Systems serie S, 2 (2009), 361.  doi: 10.3934/dcdss.2009.2.361.  Google Scholar

[12]

R. I. McLachlan and G. R. W. Quispel, Splitting methods,, Acta Numerica, 11 (2002), 341.  doi: 10.1017/S0962492902000053.  Google Scholar

[13]

J. Moser, "Notes on Dynamical System,", Courant Lecture Notes in Mathematics, (2005).   Google Scholar

[14]

J. Moser and A. P. Veselov, Discrete version of some classical integrable systems and factorization of matrix polynomials,, Commun. Math. Phys., 139 (1991), 217.  doi: 10.1007/BF02352494.  Google Scholar

[15]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman & Hall, (1994).   Google Scholar

[16]

Z.-J Shang, Volume-preserving maps, source-free and their local structures,, J. Phys. A: Math. Gen., 39 (2006), 5601.  doi: 10.1088/0305-4470/39/19/S16.  Google Scholar

[17]

Z.-J Shang, "Generating Functions for Volume Preserving Mapping with Applications I: Basic Theory,", China/Korea Joint Seminar: Dynamical Systems and Their Application, ().   Google Scholar

[18]

Z.-J Shang, Construction of volume preserving difference schemes for source-free systems via generating function,, Journal of Computational Mathematics, 12 (1994), 265.   Google Scholar

[19]

A. Weinstein, The invariance of Poincaré generating function for canonical transformations,, Inventiones math., 16 (1972), 202.  doi: 10.1007/BF01425493.  Google Scholar

[20]

H. Weyl, The method of orthogonal projection in potential theory,, Duke Math. J., 7 (1940), 411.  doi: 10.1215/S0012-7094-40-00725-6.  Google Scholar

[21]

H. Xue, O. Verdier and A. Zanna, Discrete Legendre transformation and volume preserving generating forms,, In Preparation, (2013).   Google Scholar

[22]

H. Xue and A. Zanna, Explicit volume preserving splitting methods for polynomial divergence-free vector fields,, BIT Numerical Mathematics, 53 (2013), 265.  doi: 10.1007/s10543-012-0394-0.  Google Scholar

[1]

H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361

[2]

Olivier Verdier, Huiyan Xue, Antonella Zanna. A classification of volume preserving generating forms in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2285-2303. doi: 10.3934/dcds.2016.36.2285

[3]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[4]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[5]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[6]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of volume preserving Anosov systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4767-4783. doi: 10.3934/dcds.2017205

[7]

Dae San Kim. Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups. Advances in Mathematics of Communications, 2009, 3 (2) : 167-178. doi: 10.3934/amc.2009.3.167

[8]

R.D.S. Oliveira, F. Tari. On pairs of differential $1$-forms in the plane. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 519-536. doi: 10.3934/dcds.2000.6.519

[9]

Fuzhong Cong, Hongtian Li. Quasi-effective stability for a nearly integrable volume-preserving mapping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1959-1970. doi: 10.3934/dcdsb.2015.20.1959

[10]

Carlos Gutierrez, Víctor Guíñez, Alvaro Castañeda. Quartic differential forms and transversal nets with singularities. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 225-249. doi: 10.3934/dcds.2010.26.225

[11]

Holger Heumann, Ralf Hiptmair, Cecilia Pagliantini. Stabilized Galerkin for transient advection of differential forms. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 185-214. doi: 10.3934/dcdss.2016.9.185

[12]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[13]

Vadim Kaloshin, Maria Saprykina. Generic 3-dimensional volume-preserving diffeomorphisms with superexponential growth of number of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 611-640. doi: 10.3934/dcds.2006.15.611

[14]

Rhudaina Z. Mohammad, Karel Švadlenka. Multiphase volume-preserving interface motions via localized signed distance vector scheme. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 969-988. doi: 10.3934/dcdss.2015.8.969

[15]

Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146

[16]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[17]

Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471

[18]

Dorina Mitrea and Marius Mitrea. Boundary integral methods for harmonic differential forms in Lipschitz domains. Electronic Research Announcements, 1996, 2: 92-97.

[19]

Dorina Mitrea, Irina Mitrea, Marius Mitrea, Lixin Yan. Coercive energy estimates for differential forms in semi-convex domains. Communications on Pure & Applied Analysis, 2010, 9 (4) : 987-1010. doi: 10.3934/cpaa.2010.9.987

[20]

Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]