April  2014, 34(4): 1251-1268. doi: 10.3934/dcds.2014.34.1251

A global existence result for the semigeostrophic equations in three dimensional convex domains

1. 

Scuola Normale Superiore, Piazza Cavalieri 7, 56123 Pisa

2. 

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

3. 

Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany

4. 

Department of Mathematics, The University of Texas at Austin, 1 University Station C1200, Austin TX 78712

Received  July 2012 Revised  December 2012 Published  October 2013

Exploiting recent regularity estimates for the Monge-Ampère equation, under some suitable assumptions on the initial data we prove global-in-time existence of Eulerian distributional solutions to the semigeostrophic equations in 3-dimensional convex domains.
Citation: Luigi Ambrosio, Maria Colombo, Guido De Philippis, Alessio Figalli. A global existence result for the semigeostrophic equations in three dimensional convex domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1251-1268. doi: 10.3934/dcds.2014.34.1251
References:
[1]

L. Ambrosio, M. Colombo, G. De Philippis and A. Figalli, Existence of Eulerian solutions to the semigeostrophic equations in physical space: The 2-dimensional periodic case,, Comm. Partial Differential Equations, 37 (2012), 2209.  doi: 10.1080/03605302.2012.669443.  Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[3]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields,, Invent. Math., 158 (2004), 227.  doi: 10.1007/s00222-004-0367-2.  Google Scholar

[4]

L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields,, in, 1927 (2008), 1.  doi: 10.1007/978-3-540-75914-0_1.  Google Scholar

[5]

J.-D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equation formulated as a coupled Monge-Ampère/transport problem,, SIAM J. Appl. Math., 58 (1998), 1450.  doi: 10.1137/S0036139995294111.  Google Scholar

[6]

L. Caffarelli, A localization property of viscosity solutions to the Monge-Amp\`ere equation and their strict convexity,, Ann. of Math. (2), 131 (1990), 129.  doi: 10.2307/1971509.  Google Scholar

[7]

L. Caffarelli, Boundary regularity of maps with convex potentials. II.,, Ann. of Math. (2), 144 (1996), 453.  doi: 10.2307/2118564.  Google Scholar

[8]

L. Caffarelli, Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation,, Ann. of Math. (2), 131 (1990), 135.  doi: 10.2307/1971510.  Google Scholar

[9]

L. Caffarelli, Some regularity properties of solutions to Monge-Ampère equations,, Comm. Pure Appl. Math., 44 (1991), 965.  doi: 10.1002/cpa.3160440809.  Google Scholar

[10]

L. Caffarelli, The regularity of mappings with a convex potential,, J. Amer. Math. Soc., 5 (1992), 99.  doi: 10.1090/S0894-0347-1992-1124980-8.  Google Scholar

[11]

M. Cullen, "A Mathematical Theory of Large-scale Atmosphere/Ocean Flow,", Imperial College Press, (2006).   Google Scholar

[12]

M. Cullen and M. Feldman, Lagrangian solutions of semigeostrophic equations in physical space,, SIAM J. Math. Anal., 37 (2006), 1371.  doi: 10.1137/040615444.  Google Scholar

[13]

M. Cullen and W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations,, Arch. Ration. Mech. Anal., 156 (2001), 241.  doi: 10.1007/s002050000124.  Google Scholar

[14]

M. Cullen and R. J. Purser, An extended Lagrangian theory of semi-geostrophic frontogenesis,, J. Atmos. Sci., 41 (1984), 1477.  doi: 10.1175/1520-0469(1984)041<1477:AELTOS>2.0.CO;2.  Google Scholar

[15]

G. De Philippis and A. Figalli, $W^{2,1}$ regularity for solutions of the Monge-Ampère equation,, Invent. Math., 192 (2013), 55.  doi: 10.1007/s00222-012-0405-4.  Google Scholar

[16]

G. De Philippis and A. Figalli, Second order stability for the Monge-Ampère equation and strong Sobolev convergence of optimal transport maps,, Anal. PDE, 6 (2013), 993.   Google Scholar

[17]

G. De Philippis, A. Figalli and O. Savin, A note on interior $W^{2,1+\e}$ estimates for the Monge-Ampère equation,, Math. Ann., 357 (2013), 11.  doi: 10.1007/s00208-012-0895-9.  Google Scholar

[18]

R. J. Di Perna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[19]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[20]

G. Loeper, On the regularity of the polar factorization for time dependent maps,, Calc. Var. Partial Differential Equations, 22 (2005), 343.  doi: 10.1007/s00526-004-0280-y.  Google Scholar

[21]

G. Loeper, A fully nonlinear version of the incompressible Euler equations: The semi-geostrophic system,, SIAM J. Math. Anal., 38 (2006), 795.  doi: 10.1137/050629070.  Google Scholar

[22]

R. J. McCann, Existence and uniqueness of monotone measure-preserving maps,, Duke Math. J., 80 (1995), 309.  doi: 10.1215/S0012-7094-95-08013-2.  Google Scholar

[23]

T. Schmidt, $W^{2,1+\e}$ estimates for the Monge-Ampère equation,, Adv. Math., 240 (2013), 672.  doi: 10.1016/j.aim.2012.07.034.  Google Scholar

[24]

G. J. Shutts and M. Cullen, Parcel stability and its relation to semi-geostrophic theory,, J. Atmos. Sci., 44 (1987), 1318.   Google Scholar

[25]

J. Urbas, On the second boundary value problem for equations of Monge-Ampère type,, J. Reine Angew. Math., 487 (1997), 115.  doi: 10.1515/crll.1997.487.115.  Google Scholar

[26]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338 (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

L. Ambrosio, M. Colombo, G. De Philippis and A. Figalli, Existence of Eulerian solutions to the semigeostrophic equations in physical space: The 2-dimensional periodic case,, Comm. Partial Differential Equations, 37 (2012), 2209.  doi: 10.1080/03605302.2012.669443.  Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000).   Google Scholar

[3]

L. Ambrosio, Transport equation and Cauchy problem for $BV$ vector fields,, Invent. Math., 158 (2004), 227.  doi: 10.1007/s00222-004-0367-2.  Google Scholar

[4]

L. Ambrosio, Transport equation and Cauchy problem for non-smooth vector fields,, in, 1927 (2008), 1.  doi: 10.1007/978-3-540-75914-0_1.  Google Scholar

[5]

J.-D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equation formulated as a coupled Monge-Ampère/transport problem,, SIAM J. Appl. Math., 58 (1998), 1450.  doi: 10.1137/S0036139995294111.  Google Scholar

[6]

L. Caffarelli, A localization property of viscosity solutions to the Monge-Amp\`ere equation and their strict convexity,, Ann. of Math. (2), 131 (1990), 129.  doi: 10.2307/1971509.  Google Scholar

[7]

L. Caffarelli, Boundary regularity of maps with convex potentials. II.,, Ann. of Math. (2), 144 (1996), 453.  doi: 10.2307/2118564.  Google Scholar

[8]

L. Caffarelli, Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation,, Ann. of Math. (2), 131 (1990), 135.  doi: 10.2307/1971510.  Google Scholar

[9]

L. Caffarelli, Some regularity properties of solutions to Monge-Ampère equations,, Comm. Pure Appl. Math., 44 (1991), 965.  doi: 10.1002/cpa.3160440809.  Google Scholar

[10]

L. Caffarelli, The regularity of mappings with a convex potential,, J. Amer. Math. Soc., 5 (1992), 99.  doi: 10.1090/S0894-0347-1992-1124980-8.  Google Scholar

[11]

M. Cullen, "A Mathematical Theory of Large-scale Atmosphere/Ocean Flow,", Imperial College Press, (2006).   Google Scholar

[12]

M. Cullen and M. Feldman, Lagrangian solutions of semigeostrophic equations in physical space,, SIAM J. Math. Anal., 37 (2006), 1371.  doi: 10.1137/040615444.  Google Scholar

[13]

M. Cullen and W. Gangbo, A variational approach for the 2-dimensional semi-geostrophic shallow water equations,, Arch. Ration. Mech. Anal., 156 (2001), 241.  doi: 10.1007/s002050000124.  Google Scholar

[14]

M. Cullen and R. J. Purser, An extended Lagrangian theory of semi-geostrophic frontogenesis,, J. Atmos. Sci., 41 (1984), 1477.  doi: 10.1175/1520-0469(1984)041<1477:AELTOS>2.0.CO;2.  Google Scholar

[15]

G. De Philippis and A. Figalli, $W^{2,1}$ regularity for solutions of the Monge-Ampère equation,, Invent. Math., 192 (2013), 55.  doi: 10.1007/s00222-012-0405-4.  Google Scholar

[16]

G. De Philippis and A. Figalli, Second order stability for the Monge-Ampère equation and strong Sobolev convergence of optimal transport maps,, Anal. PDE, 6 (2013), 993.   Google Scholar

[17]

G. De Philippis, A. Figalli and O. Savin, A note on interior $W^{2,1+\e}$ estimates for the Monge-Ampère equation,, Math. Ann., 357 (2013), 11.  doi: 10.1007/s00208-012-0895-9.  Google Scholar

[18]

R. J. Di Perna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.  doi: 10.1007/BF01393835.  Google Scholar

[19]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[20]

G. Loeper, On the regularity of the polar factorization for time dependent maps,, Calc. Var. Partial Differential Equations, 22 (2005), 343.  doi: 10.1007/s00526-004-0280-y.  Google Scholar

[21]

G. Loeper, A fully nonlinear version of the incompressible Euler equations: The semi-geostrophic system,, SIAM J. Math. Anal., 38 (2006), 795.  doi: 10.1137/050629070.  Google Scholar

[22]

R. J. McCann, Existence and uniqueness of monotone measure-preserving maps,, Duke Math. J., 80 (1995), 309.  doi: 10.1215/S0012-7094-95-08013-2.  Google Scholar

[23]

T. Schmidt, $W^{2,1+\e}$ estimates for the Monge-Ampère equation,, Adv. Math., 240 (2013), 672.  doi: 10.1016/j.aim.2012.07.034.  Google Scholar

[24]

G. J. Shutts and M. Cullen, Parcel stability and its relation to semi-geostrophic theory,, J. Atmos. Sci., 44 (1987), 1318.   Google Scholar

[25]

J. Urbas, On the second boundary value problem for equations of Monge-Ampère type,, J. Reine Angew. Math., 487 (1997), 115.  doi: 10.1515/crll.1997.487.115.  Google Scholar

[26]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338 (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[2]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[3]

Gershon Wolansky. Limit theorems for optimal mass transportation and applications to networks. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 365-374. doi: 10.3934/dcds.2011.30.365

[4]

Mahmut Çalik, Marcel Oliver. Weak solutions for generalized large-scale semigeostrophic equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 939-955. doi: 10.3934/cpaa.2013.12.939

[5]

A. Daducci, A. Marigonda, G. Orlandi, R. Posenato. Neuronal Fiber--tracking via optimal mass transportation. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2157-2177. doi: 10.3934/cpaa.2012.11.2157

[6]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[7]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[8]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[9]

Alexander V. Kolesnikov. Hessian metrics, $CD(K,N)$-spaces, and optimal transportation of log-concave measures. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1511-1532. doi: 10.3934/dcds.2014.34.1511

[10]

David Kinderlehrer, Adrian Tudorascu. Transport via mass transportation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 311-338. doi: 10.3934/dcdsb.2006.6.311

[11]

G.S. Liu, J.Z. Zhang. Decision making of transportation plan, a bilevel transportation problem approach. Journal of Industrial & Management Optimization, 2005, 1 (3) : 305-314. doi: 10.3934/jimo.2005.1.305

[12]

Marcel Oliver, Sergiy Vasylkevych. Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 827-846. doi: 10.3934/dcds.2011.31.827

[13]

Lorenzo Brasco, Filippo Santambrogio. An equivalent path functional formulation of branched transportation problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 845-871. doi: 10.3934/dcds.2011.29.845

[14]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

[15]

Ş. İlker Birbil, Kerem Bülbül, J. B. G. Frenk, H. M. Mulder. On EOQ cost models with arbitrary purchase and transportation costs. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1211-1245. doi: 10.3934/jimo.2015.11.1211

[16]

Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537

[17]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[18]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[19]

Kim Dang Phung, Gengsheng Wang, Xu Zhang. On the existence of time optimal controls for linear evolution equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 925-941. doi: 10.3934/dcdsb.2007.8.925

[20]

Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (7)

[Back to Top]