\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Approximation of a simple Navier-Stokes model by monotonic rearrangement

Abstract / Introduction Related Papers Cited by
  • We consider the very simple Navier-Stokes model for compressible fluids in one space dimension, where there is no temperature equation and both the pressure and the viscosity are proportional to the density. We show that the resolution of this Navier-Stokes system can be reduced, through the crucial intervention of a monotonic rearrangement operator, to the time discretization of a very elementary differential equation with noise. In addition, our result can be easily extended to a related Navier-Stokes-Poisson system.
    Mathematics Subject Classification: 35Q30, 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.

    [2]

    A. Blanchet, E. Carlen and J. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, J. Funct. Anal., 262 (2012), 2142-2230.doi: 10.1016/j.jfa.2011.12.012.

    [3]

    F. Bolley, Y. Brenier and G. Loeper, Contractive metrics for scalar conservation laws, Journal of Hyperbolic Differential Equations, 2 (2005), 91-107.doi: 10.1142/S0219891605000397.

    [4]

    Y. Brenier, Une application de la symétrisation de Steiner aux équations hyperboliques: La méthode de transport et écroulement, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 563-566.

    [5]

    Y. Brenier, Résolution d'équations d'évolution quasilinéaires en dimension $N$ d'espace à l'aide d'équations linéaires en dimension $N+1$, J. Differential Equations, 50 (1983), 375-390.doi: 10.1016/0022-0396(83)90067-0.

    [6]

    Y. Brenier, Averaged multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., 21 (1984), 1013-1037.doi: 10.1137/0721063.

    [7]

    Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375-417.doi: 10.1002/cpa.3160440402.

    [8]

    Y. Brenier, A particle method for nonlinear convection diffusion equations in dimension one, J. Comput. Appl. Math., 31 (1990), 35-56.doi: 10.1016/0377-0427(90)90334-V.

    [9]

    Y. Brenier, Order preserving vibrating strings and applications to electrodynamics and magnetohydrodynamics, Methods Appl. Anal., 11 (2004), 515-532.

    [10]

    Y. Brenier, $L^2$ formulation of multidimensional scalar conservation laws, Arch. Rational Mech. Anal., 193 (2009), 1-19.doi: 10.1007/s00205-009-0214-0.

    [11]

    Y. Brenier, Hilbertian approaches to some non-linear conservation laws, in "Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena," Contemporary Mathematics, 526, Amer. Math. Soc., Providence, RI, (2010), 19-35.doi: 10.1090/conm/526/10375.

    [12]

    Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions, J. Math. Pures Appl. (9), 99 (2013), 577-617.doi: 10.1016/j.matpur.2012.09.013.

    [13]

    H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," (French) North-Holland Mathematics Studies, No. 5, Notas de Matemática (50), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.

    [14]

    C. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics," Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2000.doi: 10.1007/3-540-29089-3_14.

    [15]

    F. Demengel and R. Temam, Convex functions of a measure and applications, Indiana Univ. Math. J., 33 (1984), 673-709.doi: 10.1512/iumj.1984.33.33036.

    [16]

    A. Chorin, Numerical methods for use in combustion modeling, in "Computing Methods in Applied Sciences and Engineering" (Proc. Fourth Internat. Sympos., Versailles, 1979), North-Holland, Amsterdam-New York, (1980), 229-236.

    [17]

    W. Gangbo and M. Westdickenberg, Optimal transport for the system of isentropic Euler equations, Comm. Partial Differential Equations, 34 (2009), 1041-1073.doi: 10.1080/03605300902892345.

    [18]

    L. Giacomelli and F. Otto, Variational formulation for the lubrication approximation of the Hele-Shaw flow, Calc. Var. Partial Differential Equations, 13 (2001), 377-403.doi: 10.1007/s005260000077.

    [19]

    Y. Giga and T. Miyakawa, A kinetic construction of global solutions of first order quasilinear equations, Duke Math. J., 50 (1983), 505-515.doi: 10.1215/S0012-7094-83-05022-6.

    [20]

    N. Gigli and S. Mosconi, A variational approach to the Navier-Stokes equations, Bull. Sci. Math., 136 (2012), 256-276.doi: 10.1016/j.bulsci.2012.01.001.

    [21]

    R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.doi: 10.1137/S0036141096303359.

    [22]

    L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system, SIAM J. Math. Anal., 41 (2009), 1340-1365.doi: 10.1137/090750809.

    [23]

    C. Villani, "Topics in Optimal Transportation," Graduate Studies in Mathematics, 58, AMS, Providence, RI, 2003.doi: 10.1007/b12016.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(191) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return