-
Previous Article
Uniqueness for Keller-Segel-type chemotaxis models
- DCDS Home
- This Issue
-
Next Article
Approximation of a simple Navier-Stokes model by monotonic rearrangement
Optimal location problems with routing cost
1. | Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa |
2. | Dipartimento di Matematica - Università di Pisa, Largo B. Pontecorvo, 5, 56127 Pisa, Italy |
3. | Dipartimento di Ingegneria Aerospaziale - Università di Pisa, Via G. Caruso, 8, 56122 Pisa, Italy |
References:
[1] |
K. A. Al Kaabi, "The Geography of Airfreight and Metropolitan Economies: Potential Connection,", Ph.D. thesis, (2010). Google Scholar |
[2] |
G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal,, C. R. Acad. Sci. Paris, 335 (2002), 853.
doi: 10.1016/S1631-073X(02)02575-X. |
[3] |
A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem,, ESAIM Control Optim. Calc. Var., 15 (2009), 509.
doi: 10.1051/cocv:2008034. |
[4] |
G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions,, In, 51 (2002), 41.
|
[5] |
G. Buttazzo and F. Santambrogio, A mass transportation model for the optimal planning of an urban region,, SIAM Rev., 51 (2009), 593.
doi: 10.1137/090759197. |
[6] |
G. Buttazzo, F. Santambrogio and E. Stepanov, Asymptotic optimal location of facilities in a competition between population and industries,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 239. Google Scholar |
[7] |
G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752.
doi: 10.1051/cocv:2006020. |
[8] |
P. Cohort, Limit theorems for random normalized distortion,, Ann. Appl. Prob., 14 (2004), 118.
doi: 10.1214/aoap/1075828049. |
[9] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications (PNLDE), 8 (1993).
doi: 10.1007/978-1-4612-0327-8. |
[10] |
L. Fejes Tóth, "Lagerungen in der Ebene, auf der Kugel und im Raum,", Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, (1953).
|
[11] |
A. Hofton, The identification of the airfreight operating cost parameters for the use in the Sika-Samgods freight model,, Tech. report, (2002). Google Scholar |
[12] |
J. P. Johnson and E. M. Gaier, Air cargo operations cost database,, NASA/CR-1998-207655, (1985), 1998. Google Scholar |
[13] |
F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem,, Amer. Math. Monthly, 109 (2002), 165.
doi: 10.2307/2695328. |
show all references
References:
[1] |
K. A. Al Kaabi, "The Geography of Airfreight and Metropolitan Economies: Potential Connection,", Ph.D. thesis, (2010). Google Scholar |
[2] |
G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal,, C. R. Acad. Sci. Paris, 335 (2002), 853.
doi: 10.1016/S1631-073X(02)02575-X. |
[3] |
A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem,, ESAIM Control Optim. Calc. Var., 15 (2009), 509.
doi: 10.1051/cocv:2008034. |
[4] |
G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions,, In, 51 (2002), 41.
|
[5] |
G. Buttazzo and F. Santambrogio, A mass transportation model for the optimal planning of an urban region,, SIAM Rev., 51 (2009), 593.
doi: 10.1137/090759197. |
[6] |
G. Buttazzo, F. Santambrogio and E. Stepanov, Asymptotic optimal location of facilities in a competition between population and industries,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 239. Google Scholar |
[7] |
G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752.
doi: 10.1051/cocv:2006020. |
[8] |
P. Cohort, Limit theorems for random normalized distortion,, Ann. Appl. Prob., 14 (2004), 118.
doi: 10.1214/aoap/1075828049. |
[9] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications (PNLDE), 8 (1993).
doi: 10.1007/978-1-4612-0327-8. |
[10] |
L. Fejes Tóth, "Lagerungen in der Ebene, auf der Kugel und im Raum,", Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, (1953).
|
[11] |
A. Hofton, The identification of the airfreight operating cost parameters for the use in the Sika-Samgods freight model,, Tech. report, (2002). Google Scholar |
[12] |
J. P. Johnson and E. M. Gaier, Air cargo operations cost database,, NASA/CR-1998-207655, (1985), 1998. Google Scholar |
[13] |
F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem,, Amer. Math. Monthly, 109 (2002), 165.
doi: 10.2307/2695328. |
[1] |
Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427 |
[2] |
Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463 |
[3] |
Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086 |
[4] |
Liping Zhang, Soon-Yi Wu. Robust solutions to Euclidean facility location problems with uncertain data. Journal of Industrial & Management Optimization, 2010, 6 (4) : 751-760. doi: 10.3934/jimo.2010.6.751 |
[5] |
Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347 |
[6] |
Jesus Garcia Azorero, Juan J. Manfredi, I. Peral, Julio D. Rossi. Limits for Monge-Kantorovich mass transport problems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 853-865. doi: 10.3934/cpaa.2008.7.853 |
[7] |
Anh Son Ta, Le Thi Hoai An, Djamel Khadraoui, Pham Dinh Tao. Solving Partitioning-Hub Location-Routing Problem using DCA. Journal of Industrial & Management Optimization, 2012, 8 (1) : 87-102. doi: 10.3934/jimo.2012.8.87 |
[8] |
Xuefeng Wang. The heterogeneous fleet location routing problem with simultaneous pickup and delivery and overloads. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1147-1166. doi: 10.3934/dcdss.2019079 |
[9] |
Adriana Navarro-Ramos, William Olvera-Lopez. A solution for discrete cost sharing problems with non rival consumption. Journal of Dynamics & Games, 2018, 5 (1) : 31-39. doi: 10.3934/jdg.2018004 |
[10] |
Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018200 |
[11] |
Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017 |
[12] |
Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679 |
[13] |
Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787 |
[14] |
Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 |
[15] |
Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53 |
[16] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019128 |
[17] |
Giuseppe Buttazzo, Eugene Stepanov. Transport density in Monge-Kantorovich problems with Dirichlet conditions. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 607-628. doi: 10.3934/dcds.2005.12.607 |
[18] |
Pengwen Chen, Changfeng Gui. Alpha divergences based mass transport models for image matching problems. Inverse Problems & Imaging, 2011, 5 (3) : 551-590. doi: 10.3934/ipi.2011.5.551 |
[19] |
Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151 |
[20] |
Fengmin Wang, Dachuan Xu, Donglei Du, Chenchen Wu. Primal-dual approximation algorithms for submodular cost set cover problems with linear/submodular penalties. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 91-100. doi: 10.3934/naco.2015.5.91 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]