\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal location problems with routing cost

Abstract / Introduction Related Papers Cited by
  • In the paper a model problem for the location of a given number $N$ of points in a given region $\Omega$ and with a given resources density $\rho(x)$ is considered. The main difference between the usual location problems and the present one is that in addition to the location cost an extra routing cost is considered, that takes into account the fact that the resources have to travel between the locations on a point-to-point basis. The limit problem as $N\to\infty$ is characterized and some applications to airfreight systems are shown.
    Mathematics Subject Classification: Primary: 49Q10, 49Q20; Secondary: 90B80, 90B85.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. A. Al Kaabi, "The Geography of Airfreight and Metropolitan Economies: Potential Connection," Ph.D. thesis, University of North Carolina, 2010.

    [2]

    G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal, C. R. Acad. Sci. Paris, 335 (2002), 853-858.doi: 10.1016/S1631-073X(02)02575-X.

    [3]

    A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem, ESAIM Control Optim. Calc. Var., 15 (2009), 509-524.doi: 10.1051/cocv:2008034.

    [4]

    G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, In "Variational Methods for Discontinuous Structures,'' Progress in Nonlinear Differential Equations Appl., 51, Birkhäuser Verlag, Basel, (2002), 41-65.

    [5]

    G. Buttazzo and F. Santambrogio, A mass transportation model for the optimal planning of an urban region, SIAM Rev., 51 (2009), 593-610.doi: 10.1137/090759197.

    [6]

    G. Buttazzo, F. Santambrogio and E. Stepanov, Asymptotic optimal location of facilities in a competition between population and industries, Ann. Sc. Norm. Super. Pisa Cl. Sci., 12 (2013), 239-273.

    [7]

    G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem, ESAIM Control Optim. Calc. Var., 12 (2006), 752-769.doi: 10.1051/cocv:2006020.

    [8]

    P. Cohort, Limit theorems for random normalized distortion, Ann. Appl. Prob., 14 (2004), 118-143.doi: 10.1214/aoap/1075828049.

    [9]

    G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Progress in Nonlinear Differential Equations and their Applications (PNLDE), 8, Birkhäuser Boston, Inc., Boston, MA, 1993.doi: 10.1007/978-1-4612-0327-8.

    [10]

    L. Fejes Tóth, "Lagerungen in der Ebene, auf der Kugel und im Raum," Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXV, Springer-Verlag, Berli-Göttingen-Heidelbergn, 1953.

    [11]

    A. Hofton, The identification of the airfreight operating cost parameters for the use in the Sika-Samgods freight model, Tech. report, 2002.

    [12]

    J. P. Johnson and E. M. Gaier, Air cargo operations cost database, NASA/CR-1998-207655, Tech. report, 1985.

    [13]

    F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem, Amer. Math. Monthly, 109 (2002), 165-172.doi: 10.2307/2695328.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(132) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return