Citation: |
[1] |
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, arXiv:1109.0222, (2012). |
[3] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.doi: 10.1007/s002110050002. |
[4] |
H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," North-Holland Mathematics Studies, No. 5. Notas de Matemática (50), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. |
[5] |
E. Carlen and J. Maas, An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy, to appear in Comm. Math. Phys., arXiv:1203.5377, (2012). |
[6] |
S.-N. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Ration. Mech. Anal., 203 (2012), 969-1008.doi: 10.1007/s00205-011-0471-6. |
[7] |
S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122.doi: 10.1137/08071346X. |
[8] |
M. Erbar, Gradient flows of the entropy for jump processes, to appear in Ann. Inst. Henri Poincaré Probab. Stat., arXiv:1204.2190, (2012). |
[9] |
M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 206 (2012), 997-1038.doi: 10.1007/s00205-012-0554-z. |
[10] |
N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics, SIAM J. Math. Anal., 45 (2013), 879-899.doi: 10.1137/120886315. |
[11] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.doi: 10.1137/S0036141096303359. |
[12] |
J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261 (2011), 2250-2292.doi: 10.1016/j.jfa.2011.06.009. |
[13] |
R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.doi: 10.1006/aima.1997.1634. |
[14] |
A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, 48 (2013), 1-31.doi: 10.1007/s00526-012-0538-8. |
[15] |
A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.doi: 10.1088/0951-7715/24/4/016. |
[16] |
A. Mielke, Dissipative quantum mechanics using GENERIC, To appear in Proc. of the conference "Recent Trends in Dynamical Systems,'' (2013). |
[17] |
F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.doi: 10.1081/PDE-100002243. |
[18] |
F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.doi: 10.1006/jfan.1999.3557. |