Advanced Search
Article Contents
Article Contents

Gradient flow structures for discrete porous medium equations

Abstract / Introduction Related Papers Cited by
  • We consider discrete porous medium equations of the form $\partial_t\rho_t = \Delta \phi(\rho_t)$, where $\Delta$ is the generator of a reversible continuous time Markov chain on a finite set $\boldsymbol{\chi} $, and $\phi$ is an increasing function. We show that these equations arise as gradient flows of certain entropy functionals with respect to suitable non-local transportation metrics. This may be seen as a discrete analogue of the Wasserstein gradient flow structure for porous medium equations in $\mathbb{R}^n$ discovered by Otto. We present a one-dimensional counterexample to geodesic convexity and discuss Gromov-Hausdorff convergence to the Wasserstein metric.
    Mathematics Subject Classification: Primary: 49Q20; Secondary: 76S05.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.


    L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, arXiv:1109.0222, (2012).


    J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.doi: 10.1007/s002110050002.


    H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," North-Holland Mathematics Studies, No. 5. Notas de Matemática (50), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.


    E. Carlen and J. Maas, An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is gradient flow for the entropy, to appear in Comm. Math. Phys., arXiv:1203.5377, (2012).


    S.-N. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Ration. Mech. Anal., 203 (2012), 969-1008.doi: 10.1007/s00205-011-0471-6.


    S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122.doi: 10.1137/08071346X.


    M. Erbar, Gradient flows of the entropy for jump processes, to appear in Ann. Inst. Henri Poincaré Probab. Stat., arXiv:1204.2190, (2012).


    M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 206 (2012), 997-1038.doi: 10.1007/s00205-012-0554-z.


    N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics, SIAM J. Math. Anal., 45 (2013), 879-899.doi: 10.1137/120886315.


    R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.doi: 10.1137/S0036141096303359.


    J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261 (2011), 2250-2292.doi: 10.1016/j.jfa.2011.06.009.


    R. J. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.doi: 10.1006/aima.1997.1634.


    A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, 48 (2013), 1-31.doi: 10.1007/s00526-012-0538-8.


    A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.doi: 10.1088/0951-7715/24/4/016.


    A. Mielke, Dissipative quantum mechanics using GENERIC, To appear in Proc. of the conference "Recent Trends in Dynamical Systems,'' (2013).


    F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.doi: 10.1081/PDE-100002243.


    F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.doi: 10.1006/jfan.1999.3557.

  • 加载中

Article Metrics

HTML views() PDF downloads(182) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint