April  2014, 34(4): 1375-1396. doi: 10.3934/dcds.2014.34.1375

On the Lagrangian structure of quantum fluid models

1. 

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Wien, Austria, Austria

2. 

Institute for Mathematics, Universität Leipzig, Augustusplatz 10, 04109 Leipzig, Germany

Received  January 2013 Revised  May 2013 Published  October 2013

Some quantum fluid models are written as the Lagrangian flow of mass distributions and their geometric properties are explored. The first model includes magnetic effects and leads, via the Madelung transform, to the electromagnetic Schrödinger equation in the Madelung representation. It is shown that the Madelung transform is a symplectic map between Hamiltonian systems. The second model is obtained from the Euler-Lagrange equations with friction induced from a quadratic dissipative potential. This model corresponds to the quantum Navier-Stokes equations with density-dependent viscosity. The fact that this model possesses two different energy-dissipation identities is explained by the definition of the Noether currents.
Citation: Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,'', Second edition, (2008).   Google Scholar

[2]

A. Arnold, Mathematical properties of quantum evolution equations,, in, 1946 (2008), 45.  doi: 10.1007/978-3-540-79574-2_2.  Google Scholar

[3]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[4]

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,, Numer. Math., 84 (2000), 375.  doi: 10.1007/s002110050002.  Google Scholar

[5]

S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum Euler model,, Z. Angew. Math. Mech., 90 (2010), 219.  doi: 10.1002/zamm.200900297.  Google Scholar

[6]

B. van Brunt, "The Calculus of Variations,'', Universitext, (2004).   Google Scholar

[7]

P. Dirac, The Lagrangian in quantum mechanics,, Phys. Z. Sowjet., 3 (1933), 64.   Google Scholar

[8]

Dj. Djukic and B. Vujanović, Noether's theory in classical nonconservative mechanics,, Acta Mech., 23 (1975), 17.   Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,'', Oxford Lecture Series in Mathematics and its Applications, 26 (2004).   Google Scholar

[10]

J. Feng and T. Nguyen, Hamilton-Jacobi equations in space of measures associated with a system of conservation laws,, J. Math. Pures Appl. (9), 97 (2012), 318.  doi: 10.1016/j.matpur.2011.11.004.  Google Scholar

[11]

L. Brown, ed., "Feynman's Thesis. A New Approach to Quantum Theory,'', World Scientific Publishing Co. Pte. Ltd., (2005).  doi: 10.1142/9789812567635.  Google Scholar

[12]

T. Frankel, "The Geometry of Physics. An Introduction,'', Cambridge University Press, (1997).   Google Scholar

[13]

G. Frederico and D. Torres, Nonconservative Noether's theorem in optimal control,, Intern. J. Tomogr. Stat., 5 (2007), 109.   Google Scholar

[14]

J.-L. Fu and L.-Q. Chen, Non-Noether symmetries and conserved quantities of nonconservative dynamical systems,, Phys. Lett. A, 317 (2003), 255.  doi: 10.1016/j.physleta.2003.08.028.  Google Scholar

[15]

A. Jüngel, "Transport Equations for Semiconductors,'', Lecture Notes in Physics, 773 (2009).  doi: 10.1007/978-3-540-89526-8.  Google Scholar

[16]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids,, SIAM J. Math. Anal., 42 (2010), 1025.  doi: 10.1137/090776068.  Google Scholar

[17]

A. Jüngel, J. L. López and J. Montejo-Gámez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach,, J. Stat. Phys., 145 (2011), 1661.  doi: 10.1007/s10955-011-0388-3.  Google Scholar

[18]

A. Jüngel and J.-P. Milišić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution,, Kinetic Related Models, 4 (2011), 785.  doi: 10.3934/krm.2011.4.785.  Google Scholar

[19]

J. Lafferty, The density manifold and configuration space quantization,, Trans. Amer. Math. Soc., 305 (1988), 699.  doi: 10.1090/S0002-9947-1988-0924776-9.  Google Scholar

[20]

J. Lott, Some geometric calculations on Wasserstein space,, Commun. Math. Phys., 277 (2008), 423.  doi: 10.1007/s00220-007-0367-3.  Google Scholar

[21]

E. Madelung, Quantentheorie in hydrodynamischer Form,, Z. Phys., 40 (1926), 322.  doi: 10.1007/BF01400372.  Google Scholar

[22]

P. Markowich, T. Paul and C. Sparber, Bohmian measures and their classical limit,, J. Funct. Anal., 259 (2010), 1542.  doi: 10.1016/j.jfa.2010.05.013.  Google Scholar

[23]

R. McCann, Polar factorization of maps on Riemannian manifolds,, GAFA Geom. Funct. Anal., 11 (2001), 589.  doi: 10.1007/PL00001679.  Google Scholar

[24]

E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics,, Phys. Rev., 150 (1966), 1079.  doi: 10.1103/PhysRev.150.1079.  Google Scholar

[25]

F. Otto, The geometry of dissipative evolution equations: The porous-medium equation,, Commun. Part. Diff. Eqs., 26 (2001), 101.  doi: 10.1081/PDE-100002243.  Google Scholar

[26]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361.  doi: 10.1006/jfan.1999.3557.  Google Scholar

[27]

M.-K. von Renesse, On optimal transport view on Schrödinger's equation,, Canad. Math. Bull., 55 (2012), 858.  doi: 10.4153/CMB-2011-121-9.  Google Scholar

[28]

W. Sarlett and F. Cantrijn, Generalization of Noether's Theorem in classical mechanics,, SIAM Review, 23 (1981), 467.  doi: 10.1137/1023098.  Google Scholar

[29]

R. Talman, "Geometric Mechanics,'', Wiley, (2000).   Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,'', Second edition, (2008).   Google Scholar

[2]

A. Arnold, Mathematical properties of quantum evolution equations,, in, 1946 (2008), 45.  doi: 10.1007/978-3-540-79574-2_2.  Google Scholar

[3]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[4]

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem,, Numer. Math., 84 (2000), 375.  doi: 10.1007/s002110050002.  Google Scholar

[5]

S. Brull and F. Méhats, Derivation of viscous correction terms for the isothermal quantum Euler model,, Z. Angew. Math. Mech., 90 (2010), 219.  doi: 10.1002/zamm.200900297.  Google Scholar

[6]

B. van Brunt, "The Calculus of Variations,'', Universitext, (2004).   Google Scholar

[7]

P. Dirac, The Lagrangian in quantum mechanics,, Phys. Z. Sowjet., 3 (1933), 64.   Google Scholar

[8]

Dj. Djukic and B. Vujanović, Noether's theory in classical nonconservative mechanics,, Acta Mech., 23 (1975), 17.   Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,'', Oxford Lecture Series in Mathematics and its Applications, 26 (2004).   Google Scholar

[10]

J. Feng and T. Nguyen, Hamilton-Jacobi equations in space of measures associated with a system of conservation laws,, J. Math. Pures Appl. (9), 97 (2012), 318.  doi: 10.1016/j.matpur.2011.11.004.  Google Scholar

[11]

L. Brown, ed., "Feynman's Thesis. A New Approach to Quantum Theory,'', World Scientific Publishing Co. Pte. Ltd., (2005).  doi: 10.1142/9789812567635.  Google Scholar

[12]

T. Frankel, "The Geometry of Physics. An Introduction,'', Cambridge University Press, (1997).   Google Scholar

[13]

G. Frederico and D. Torres, Nonconservative Noether's theorem in optimal control,, Intern. J. Tomogr. Stat., 5 (2007), 109.   Google Scholar

[14]

J.-L. Fu and L.-Q. Chen, Non-Noether symmetries and conserved quantities of nonconservative dynamical systems,, Phys. Lett. A, 317 (2003), 255.  doi: 10.1016/j.physleta.2003.08.028.  Google Scholar

[15]

A. Jüngel, "Transport Equations for Semiconductors,'', Lecture Notes in Physics, 773 (2009).  doi: 10.1007/978-3-540-89526-8.  Google Scholar

[16]

A. Jüngel, Global weak solutions to compressible Navier-Stokes equations for quantum fluids,, SIAM J. Math. Anal., 42 (2010), 1025.  doi: 10.1137/090776068.  Google Scholar

[17]

A. Jüngel, J. L. López and J. Montejo-Gámez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach,, J. Stat. Phys., 145 (2011), 1661.  doi: 10.1007/s10955-011-0388-3.  Google Scholar

[18]

A. Jüngel and J.-P. Milišić, Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution,, Kinetic Related Models, 4 (2011), 785.  doi: 10.3934/krm.2011.4.785.  Google Scholar

[19]

J. Lafferty, The density manifold and configuration space quantization,, Trans. Amer. Math. Soc., 305 (1988), 699.  doi: 10.1090/S0002-9947-1988-0924776-9.  Google Scholar

[20]

J. Lott, Some geometric calculations on Wasserstein space,, Commun. Math. Phys., 277 (2008), 423.  doi: 10.1007/s00220-007-0367-3.  Google Scholar

[21]

E. Madelung, Quantentheorie in hydrodynamischer Form,, Z. Phys., 40 (1926), 322.  doi: 10.1007/BF01400372.  Google Scholar

[22]

P. Markowich, T. Paul and C. Sparber, Bohmian measures and their classical limit,, J. Funct. Anal., 259 (2010), 1542.  doi: 10.1016/j.jfa.2010.05.013.  Google Scholar

[23]

R. McCann, Polar factorization of maps on Riemannian manifolds,, GAFA Geom. Funct. Anal., 11 (2001), 589.  doi: 10.1007/PL00001679.  Google Scholar

[24]

E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics,, Phys. Rev., 150 (1966), 1079.  doi: 10.1103/PhysRev.150.1079.  Google Scholar

[25]

F. Otto, The geometry of dissipative evolution equations: The porous-medium equation,, Commun. Part. Diff. Eqs., 26 (2001), 101.  doi: 10.1081/PDE-100002243.  Google Scholar

[26]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality,, J. Funct. Anal., 173 (2000), 361.  doi: 10.1006/jfan.1999.3557.  Google Scholar

[27]

M.-K. von Renesse, On optimal transport view on Schrödinger's equation,, Canad. Math. Bull., 55 (2012), 858.  doi: 10.4153/CMB-2011-121-9.  Google Scholar

[28]

W. Sarlett and F. Cantrijn, Generalization of Noether's Theorem in classical mechanics,, SIAM Review, 23 (1981), 467.  doi: 10.1137/1023098.  Google Scholar

[29]

R. Talman, "Geometric Mechanics,'', Wiley, (2000).   Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[2]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[5]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[9]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[12]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[13]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[16]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[17]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[20]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]