\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Abresch-Gromoll inequality in a non-smooth setting

Abstract Related Papers Cited by
  • We prove that the Abresch-Gromoll inequality holds on infinitesimally Hilbertian $CD(K,N)$ spaces in the same form as the one available on smooth Riemannian manifolds.
    Mathematics Subject Classification: Primary: 51Fxx; Secondary: 53C21.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc., 3 (1990), 355-374.doi: 10.1090/S0894-0347-1990-1030656-6.

    [2]

    L. Ambrosio and N. GigliUser's guide to optimal transport theory, to appear in the CIME Lecture Notes in Mathematics, (eds. B. Piccoli and F. Poupaud).

    [3]

    L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure, accepted in Trans. Amer. Math. Soc., arXiv:1207.4924 (2012).

    [4]

    L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.

    [5]

    ______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below, accepted in Invent. Math., arXiv:1106.2090, (2013).

    [6]

    ______, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, accepted in Rev. Mat. Iberoam., arXiv:1111.3730 (2012).

    [7]

    ______, Metric measure spaces with Riemannian Ricci curvature bounded from below, submitted, arXiv:1109.0222, (2011).

    [8]

    A. Björn and J. Björn, "Nonlinear Potential Theory on Metric Spaces," EMS Tracts in Mathematics, 17, European Mathematical Society (EMS), Zürich, 2011.doi: 10.4171/099.

    [9]

    J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), 428-517.doi: 10.1007/s000390050094.

    [10]

    J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 144 (1996), 189-237.doi: 10.2307/2118589.

    [11]

    N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. PDE, 39 (2010), 101-120.doi: 10.1007/s00526-009-0303-9.

    [12]

    ______, On the differential structure of metric measure spaces and applications, accepted in Memoirs of the AMS, arXiv:1205.6622 (2013).

    [13]

    N. Gigli, K. Kuwada and S.-i. Ohta, Heat flow on Alexandrov spaces, Communications on Pure and Applied Mathematics, 66 (2013), 307-331.doi: 10.1002/cpa.21431.

    [14]

    N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces, Journal de Mathématiques Pures et Appliquées, (2013).doi: 10.1016/j.matpur.2013.01.011.

    [15]

    N. Gigli, A. Mondino and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications, preprint, (2013).

    [16]

    J. Lott and C. Villani, Weak curvature bounds and functional inequalities, J. Funct. Anal., 245 (2007), 311-333.doi: 10.1016/j.jfa.2006.10.018.

    [17]

    ______, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.doi: 10.4007/annals.2009.169.903.

    [18]

    T. Rajala, Local Poincaré inequalities from stable curvature conditions in metric spaces, Calculus of Variations and Partial Differential Equations, 44 (2012), 477-494.doi: 10.1007/s00526-011-0442-7.

    [19]

    Z. Shen, The non-linear laplacian for Finsler manifolds, in "The Theory of Finslerian Laplacians and Applications," Math. Appl., 459, Kluwer Acad. Publ., Dordrecht, (1998), 187-198.

    [20]

    K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.doi: 10.1007/s11511-006-0002-8.

    [21]

    ______, On the geometry of metric measure spaces. II, Acta Math., 196 (2006), 133-177.

    [22]

    C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-540-71050-9.

    [23]

    H. Zhang and X. Zhu, On a new definition of Ricci curvature on Alexandrov spaces, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1949-1974.doi: 10.1016/S0252-9602(10)60185-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return