April  2014, 34(4): 1481-1509. doi: 10.3934/dcds.2014.34.1481

The Abresch-Gromoll inequality in a non-smooth setting

1. 

Université de Nice, Mathématiques, Parc Valrose, 06108 Nice, France

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy

Received  September 2012 Revised  November 2012 Published  October 2013

We prove that the Abresch-Gromoll inequality holds on infinitesimally Hilbertian $CD(K,N)$ spaces in the same form as the one available on smooth Riemannian manifolds.
Citation: Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481
References:
[1]

U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature,, J. Amer. Math. Soc., 3 (1990), 355.  doi: 10.1090/S0894-0347-1990-1030656-6.  Google Scholar

[2]

L. Ambrosio and N. Gigli, User's guide to optimal transport theory,, to appear in the CIME Lecture Notes in Mathematics, ().   Google Scholar

[3]

L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure,, accepted in Trans. Amer. Math. Soc., (2012).   Google Scholar

[4]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Second edition, (2008).   Google Scholar

[5]

______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, accepted in Invent. Math., (2013).   Google Scholar

[6]

______, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces,, accepted in Rev. Mat. Iberoam., (2012).   Google Scholar

[7]

______, Metric measure spaces with Riemannian Ricci curvature bounded from below,, submitted, (2011).   Google Scholar

[8]

A. Björn and J. Björn, "Nonlinear Potential Theory on Metric Spaces,", EMS Tracts in Mathematics, 17 (2011).  doi: 10.4171/099.  Google Scholar

[9]

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428.  doi: 10.1007/s000390050094.  Google Scholar

[10]

J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products,, Ann. of Math. (2), 144 (1996), 189.  doi: 10.2307/2118589.  Google Scholar

[11]

N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability,, Calc. Var. PDE, 39 (2010), 101.  doi: 10.1007/s00526-009-0303-9.  Google Scholar

[12]

______, On the differential structure of metric measure spaces and applications,, accepted in Memoirs of the AMS, (2013).   Google Scholar

[13]

N. Gigli, K. Kuwada and S.-i. Ohta, Heat flow on Alexandrov spaces,, Communications on Pure and Applied Mathematics, 66 (2013), 307.  doi: 10.1002/cpa.21431.  Google Scholar

[14]

N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces,, Journal de Mathématiques Pures et Appliquées, (2013).  doi: 10.1016/j.matpur.2013.01.011.  Google Scholar

[15]

N. Gigli, A. Mondino and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications,, preprint, (2013).   Google Scholar

[16]

J. Lott and C. Villani, Weak curvature bounds and functional inequalities,, J. Funct. Anal., 245 (2007), 311.  doi: 10.1016/j.jfa.2006.10.018.  Google Scholar

[17]

______, Ricci curvature for metric-measure spaces via optimal transport,, Ann. of Math. (2), 169 (2009), 903.  doi: 10.4007/annals.2009.169.903.  Google Scholar

[18]

T. Rajala, Local Poincaré inequalities from stable curvature conditions in metric spaces,, Calculus of Variations and Partial Differential Equations, 44 (2012), 477.  doi: 10.1007/s00526-011-0442-7.  Google Scholar

[19]

Z. Shen, The non-linear laplacian for Finsler manifolds,, in, 459 (1998), 187.   Google Scholar

[20]

K.-T. Sturm, On the geometry of metric measure spaces. I,, Acta Math., 196 (2006), 65.  doi: 10.1007/s11511-006-0002-8.  Google Scholar

[21]

______, On the geometry of metric measure spaces. II,, Acta Math., 196 (2006), 133.   Google Scholar

[22]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338 (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

[23]

H. Zhang and X. Zhu, On a new definition of Ricci curvature on Alexandrov spaces,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1949.  doi: 10.1016/S0252-9602(10)60185-3.  Google Scholar

show all references

References:
[1]

U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature,, J. Amer. Math. Soc., 3 (1990), 355.  doi: 10.1090/S0894-0347-1990-1030656-6.  Google Scholar

[2]

L. Ambrosio and N. Gigli, User's guide to optimal transport theory,, to appear in the CIME Lecture Notes in Mathematics, ().   Google Scholar

[3]

L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure,, accepted in Trans. Amer. Math. Soc., (2012).   Google Scholar

[4]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Second edition, (2008).   Google Scholar

[5]

______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below,, accepted in Invent. Math., (2013).   Google Scholar

[6]

______, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces,, accepted in Rev. Mat. Iberoam., (2012).   Google Scholar

[7]

______, Metric measure spaces with Riemannian Ricci curvature bounded from below,, submitted, (2011).   Google Scholar

[8]

A. Björn and J. Björn, "Nonlinear Potential Theory on Metric Spaces,", EMS Tracts in Mathematics, 17 (2011).  doi: 10.4171/099.  Google Scholar

[9]

J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces,, Geom. Funct. Anal., 9 (1999), 428.  doi: 10.1007/s000390050094.  Google Scholar

[10]

J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products,, Ann. of Math. (2), 144 (1996), 189.  doi: 10.2307/2118589.  Google Scholar

[11]

N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability,, Calc. Var. PDE, 39 (2010), 101.  doi: 10.1007/s00526-009-0303-9.  Google Scholar

[12]

______, On the differential structure of metric measure spaces and applications,, accepted in Memoirs of the AMS, (2013).   Google Scholar

[13]

N. Gigli, K. Kuwada and S.-i. Ohta, Heat flow on Alexandrov spaces,, Communications on Pure and Applied Mathematics, 66 (2013), 307.  doi: 10.1002/cpa.21431.  Google Scholar

[14]

N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces,, Journal de Mathématiques Pures et Appliquées, (2013).  doi: 10.1016/j.matpur.2013.01.011.  Google Scholar

[15]

N. Gigli, A. Mondino and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications,, preprint, (2013).   Google Scholar

[16]

J. Lott and C. Villani, Weak curvature bounds and functional inequalities,, J. Funct. Anal., 245 (2007), 311.  doi: 10.1016/j.jfa.2006.10.018.  Google Scholar

[17]

______, Ricci curvature for metric-measure spaces via optimal transport,, Ann. of Math. (2), 169 (2009), 903.  doi: 10.4007/annals.2009.169.903.  Google Scholar

[18]

T. Rajala, Local Poincaré inequalities from stable curvature conditions in metric spaces,, Calculus of Variations and Partial Differential Equations, 44 (2012), 477.  doi: 10.1007/s00526-011-0442-7.  Google Scholar

[19]

Z. Shen, The non-linear laplacian for Finsler manifolds,, in, 459 (1998), 187.   Google Scholar

[20]

K.-T. Sturm, On the geometry of metric measure spaces. I,, Acta Math., 196 (2006), 65.  doi: 10.1007/s11511-006-0002-8.  Google Scholar

[21]

______, On the geometry of metric measure spaces. II,, Acta Math., 196 (2006), 133.   Google Scholar

[22]

C. Villani, "Optimal Transport. Old and New,", Grundlehren der Mathematischen Wissenschaften, 338 (2009).  doi: 10.1007/978-3-540-71050-9.  Google Scholar

[23]

H. Zhang and X. Zhu, On a new definition of Ricci curvature on Alexandrov spaces,, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1949.  doi: 10.1016/S0252-9602(10)60185-3.  Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[3]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]