Citation: |
[1] |
U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc., 3 (1990), 355-374.doi: 10.1090/S0894-0347-1990-1030656-6. |
[2] |
L. Ambrosio and N. Gigli, User's guide to optimal transport theory, to appear in the CIME Lecture Notes in Mathematics, (eds. B. Piccoli and F. Poupaud). |
[3] |
L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure, accepted in Trans. Amer. Math. Soc., arXiv:1207.4924 (2012). |
[4] |
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[5] |
______, Calculus and heat flows in metric measure spaces with Ricci curvature bounded from below, accepted in Invent. Math., arXiv:1106.2090, (2013). |
[6] |
______, Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, accepted in Rev. Mat. Iberoam., arXiv:1111.3730 (2012). |
[7] |
______, Metric measure spaces with Riemannian Ricci curvature bounded from below, submitted, arXiv:1109.0222, (2011). |
[8] |
A. Björn and J. Björn, "Nonlinear Potential Theory on Metric Spaces," EMS Tracts in Mathematics, 17, European Mathematical Society (EMS), Zürich, 2011.doi: 10.4171/099. |
[9] |
J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), 428-517.doi: 10.1007/s000390050094. |
[10] |
J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 144 (1996), 189-237.doi: 10.2307/2118589. |
[11] |
N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. PDE, 39 (2010), 101-120.doi: 10.1007/s00526-009-0303-9. |
[12] |
______, On the differential structure of metric measure spaces and applications, accepted in Memoirs of the AMS, arXiv:1205.6622 (2013). |
[13] |
N. Gigli, K. Kuwada and S.-i. Ohta, Heat flow on Alexandrov spaces, Communications on Pure and Applied Mathematics, 66 (2013), 307-331.doi: 10.1002/cpa.21431. |
[14] |
N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces, Journal de Mathématiques Pures et Appliquées, (2013).doi: 10.1016/j.matpur.2013.01.011. |
[15] |
N. Gigli, A. Mondino and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications, preprint, (2013). |
[16] |
J. Lott and C. Villani, Weak curvature bounds and functional inequalities, J. Funct. Anal., 245 (2007), 311-333.doi: 10.1016/j.jfa.2006.10.018. |
[17] |
______, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.doi: 10.4007/annals.2009.169.903. |
[18] |
T. Rajala, Local Poincaré inequalities from stable curvature conditions in metric spaces, Calculus of Variations and Partial Differential Equations, 44 (2012), 477-494.doi: 10.1007/s00526-011-0442-7. |
[19] |
Z. Shen, The non-linear laplacian for Finsler manifolds, in "The Theory of Finslerian Laplacians and Applications," Math. Appl., 459, Kluwer Acad. Publ., Dordrecht, (1998), 187-198. |
[20] |
K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.doi: 10.1007/s11511-006-0002-8. |
[21] |
______, On the geometry of metric measure spaces. II, Acta Math., 196 (2006), 133-177. |
[22] |
C. Villani, "Optimal Transport. Old and New," Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-540-71050-9. |
[23] |
H. Zhang and X. Zhu, On a new definition of Ricci curvature on Alexandrov spaces, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1949-1974.doi: 10.1016/S0252-9602(10)60185-3. |