-
Previous Article
Congestion-driven dendritic growth
- DCDS Home
- This Issue
-
Next Article
Hessian metrics, $CD(K,N)$-spaces, and optimal transportation of log-concave measures
A survey of the Schrödinger problem and some of its connections with optimal transport
1. | Modal-X. Université Paris Ouest, Bât. G, 200 av. de la République. 92001 Nanterre, France |
References:
[1] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[2] |
S. Bernstein, Sur les liaisons entre les grandeurs aléatoires, Verhand. Internat. Math. Kongr. Zürich, (1932), no. Band I. |
[3] |
A. Beurling, An automormhism of product measures, Ann. Math., 72 (1960), 189-200.
doi: 10.2307/1970151. |
[4] |
P. Billingsley, "Convergence of Probability Measures," John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. |
[5] |
J. M. Borwein and A. S. Lewis, Decomposition of multivariate functions, Can. J. Math., 44 (1992), 463-482.
doi: 10.4153/CJM-1992-030-9. |
[6] |
P. Cattiaux and C. Léonard, Large deviations and Nelson's processes, Forum Math., 7 (1995), 95-115.
doi: 10.1515/form.1995.7.95. |
[7] |
K. L. Chung and J.-C. Zambrini, "Introduction to Random Time and Quantum Randomness," World Scientific, 2008. |
[8] |
D. Cordero Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219-257.
doi: 10.1007/s002220100160. |
[9] |
A. B. Cruzeiro, L. Wu and J.-C. Zambrini, Bernstein processes associated with a Markov process, Stochastic analysis and mathematical physics, ANESTOC'98. Proceedings of the Third International Workshop (Boston) (R. Rebolledo, ed.), Trends in Mathematics, Birkhäuser, 2000, pp. 41-71. |
[10] |
A. B. Cruzeiro and J.-C. Zambrini, Malliavin calculus and Euclidean quantum mechanics, I, Functional calculus. J. Funct. Anal., 96 (1991), 62-95.
doi: 10.1016/0022-1236(91)90073-E. |
[11] |
I. Csiszár, $I$-divergence geometry of probability distributions and minimization problems, Annals of Probability, 3 (1975), 146-158.
doi: 10.1214/aop/1176996454. |
[12] |
P. Dai Pra, A stochastic control approach to reciprocal diffusion processes, Appl. Math. Optim., 23 (1991), 313-329.
doi: 10.1007/BF01442404. |
[13] |
G. Dal Maso, "An Introduction to $\gamma$-convergence," Progress in Nonlinear Differential Equations and Their Applications 8, Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[14] |
D. Dawson, L. Gorostiza and A. Wakolbinger, Schrödinger processes and large deviations, J. Math. Phys., 31 (1990), 2385-2388.
doi: 10.1063/1.528840. |
[15] |
D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, 20 (1987), 247-308.
doi: 10.1080/17442508708833446. |
[16] |
A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications," Second edition, Applications of Mathematics 38, Springer Verlag, New York, 1998. |
[17] |
P. A. M. Dirac, The lagrangian in quantum mechanics, Phys. Zeitsch. der Sowietunion, 3 (1933), 64-72. |
[18] |
J. L. Doob, "Stochastic Processes," John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. viii+654 pp. |
[19] |
J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France, 85 (1957), 431-458. |
[20] |
J. L. Doob, "Classical Potential Theory and Its Probabilistic Counterpart," 2nd ed., Classics in Mathematics, Springer, 2000, (reprint of the 1984 first edition). |
[21] |
A. Dupuy and A. Galichon, Personality traits and the marriage market, Preprint. Available at SSRN: http://ssrn.com/abstract=2162812. |
[22] |
R. Feynman, "Feynman's Thesis. A New Approach to Quantum Theory," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. xxii+121 pp.
doi: 10.1142/9789812567635. |
[23] |
R. Feynman and A. Hibbs, "Quantum Mechanics and Path Integrals," McGraw-Hill, 1965. |
[24] |
H. Föllmer, "Random Fields and Diffusion Processes, in école D'été De Probabilités De Saint-Flour xv-xvii-1985-87," Lecture Notes in Mathematics, vol. 1362, Springer, Berlin, 1988.
doi: 10.1007/BFb0086180. |
[25] |
H. Föllmer and N. Gantert, Entropy minimization and Schrödinger processes in infinite dimensions, Ann. Probab., 25 (1997), 901-926.
doi: 10.1214/aop/1024404423. |
[26] |
R. Fortet, Résolution d'un système d'équations de M. Schrödinger, J. Math. Pures Appl. 9 (1940), 83. |
[27] |
A. Galichon and B. Salanie, Matching with trade-offs: Revealed preferences over competing characteristics, Preprint. http://hal.archives-ouvertes.fr/hal-00473173/en/. |
[28] |
B. Jamison, Reciprocal processes, Z. Wahrsch. verw. Geb., 30 (1974), 65-86.
doi: 10.1007/BF00532864. |
[29] |
B. Jamison, The Markov processes of Schrödinger, Z. Wahrsch. verw. Geb., 32 (1975), 323-331.
doi: 10.1007/BF00535844. |
[30] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[31] |
M. Kac, On distributions of certain Wiener functionals, Trans. Amer. Math. Soc., 65 (1949), 1-13.
doi: 10.1090/S0002-9947-1949-0027960-X. |
[32] |
A. Kolmogorov, Zur Theorie der Markoffschen Ketten, Mathematische Annalen, 112 (1936).
doi: 10.1007/BF01565412. |
[33] |
C. Léonard, Lazy random walks and optimal transport on graphs, Preprint. |
[34] |
C. Léonard, On the convexity of the entropy along entropic interpolations, Preprint. |
[35] | |
[36] |
C. Léonard, Stochastic derivatives and $h$-transforms of Markov processes, Preprint. |
[37] |
C. Léonard, Minimization of energy functionals applied to some inverse problems, J. Appl. Math. Optim., 44 (2001), 273-297.
doi: 10.1007/s00245-001-0019-5. |
[38] |
C. Léonard, Minimizers of energy functionals, Acta Math. Hungar., 93 (2001), 281-325.
doi: 10.1023/A:1017919422086. |
[39] |
C. Léonard, Entropic projections and dominating points, ESAIM Probab. Stat., 14 (2010), 343-381.
doi: 10.1051/ps/2009003. |
[40] |
C. Léonard, From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct. Anal., 262 (2012), 1879-1920. |
[41] |
C. Léonard, Girsanov theory under a finite entropy condition, Séminaire de probabilités XLIV., Lecture Notes in Mathematics 2046. Springer, 2012, pp. 429-465.
doi: 10.1007/978-3-642-27461-9_20. |
[42] |
C. Léonard, S. Rœlly and J.-C. Zambrini, On the time symmetry of some stochastic processes, Preprint. |
[43] |
J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math., 169 (2009), 903-991.
doi: 10.4007/annals.2009.169.903. |
[44] |
R. McCann, "A Convexity Theory for Interacting Gases and Equilibrium Crystals," PhD thesis, Princeton Univ., 1994. |
[45] |
R. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.
doi: 10.1006/aima.1997.1634. |
[46] |
T. Mikami, Variational processes from the weak forward equation, Comm. Math. Phys., 135 (1990), 19-40.
doi: 10.1007/BF02097655. |
[47] |
T. Mikami, Dynamical systems in the variational formulation of the Fokker-Planck equation by the Wasserstein metric, Appl. Math. Optim., 42 (2000), 203-227.
doi: 10.1007/s002450010008. |
[48] |
T. Mikami, Optimal control for absolutely continuous stochastic processes and the mass transportation problem, Electron. Comm. Probab., 7 (2002), 199-213.
doi: 10.1214/ECP.v7-1061. |
[49] |
T. Mikami, Monge's problem with a quadratic cost by the zero-noise limit of $h$-path processes, Probab. Theory Relat. Fields, 129 (2004), 245-260.
doi: 10.1007/s00440-004-0340-4. |
[50] |
T. Mikami, A simple proof of duality theorem for Monge-Kantorovich problem, Kodai Math. J., 29 (2006), 1-4.
doi: 10.2996/kmj/1143122381. |
[51] |
T. Mikami, Marginal problem for semimartingales via duality, International Conference for the 25th Anniversary of Viscosity Solutions, Gakuto International Series. Mathematical Sciences and Applications, vol. 30, 2008, pp. 133-152. |
[52] |
T. Mikami, Optimal transportation problem as stochastic mechanics, Selected papers on probability and statistics, 75-94, Amer. Math. Soc. Transl. Ser. 2, 227, Amer. Math. Soc., Providence, RI, 2009. |
[53] |
T. Mikami, A characterization of the Knothe-Rosenblatt processes by a convergence result, SIAM J. Control and Optim., 50 (2012), 1903-1920.
doi: 10.1137/100791129. |
[54] |
T. Mikami and M. Thieullen, Duality theorem for the stochastic optimal control problem, Stoch. Proc. Appl., 116 (2006), 1815-1835.
doi: 10.1016/j.spa.2006.04.014. |
[55] |
T. Mikami and M. Thieullen, Optimal transportation problem by stochastic optimal control, SIAM J. Control Optim., 47 (2008), 1127-1139.
doi: 10.1137/050631264. |
[56] |
M. Nagasawa, Transformations of diffusion and Schrödinger processes, Probab. Theory Related Fields, 82 (1989), 109-136.
doi: 10.1007/BF00340014. |
[57] |
M. Nagasawa, "Stochastic Processes in Quantum Physics," Monographs in Mathematics, vol. 94, Birkhäuser Verlag, Basel, 2000.
doi: 10.1007/978-3-0348-8383-2. |
[58] |
E. Nelson, "Dynamical Theories of Brownian Motion," Princeton University Press, Princeton, N.J. 1967 iii+142 pp. |
[59] |
E. Nelson, "Quantum Fluctuations," Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1985. |
[60] |
F. Otto, The geometry of dissipative evolution equations: The porous medieum equation., Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[61] |
F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.
doi: 10.1006/jfan.1999.3557. |
[62] |
D. Revuz and M. Yor, "Continuous Martingales and Brownian Motion," 3rd ed., Grundlehren der Mathematischen Wissenschaften, [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999.. |
[63] |
L. Rüschendorf and W. Thomsen, Note on the Schrödinger equation and $I$-projections, Statist. Probab. Lett., 17 (1993), 369-375.
doi: 10.1016/0167-7152(93)90257-J. |
[64] |
L. Rüschendorf and W. Thomsen, Closedness of sum spaces and the generalized Schrödinger problem, Theory Probab. Appl., 42 (1998), 483-494. |
[65] |
E. Schrödinger, Über die umkehrung der naturgesetze, Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144 (1931), 144-153. |
[66] |
E. Schrödinger, Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique, (French) Ann. Inst. H. Poincaré, 2 (1932), 269-310. |
[67] |
K-T. Sturm, On the geometry of metric measure spaces, I, Acta Math., 196 (2006), 65-131.
doi: 10.1007/s11511-006-0002-8. |
[68] |
K-T. Sturm, On the geometry of metric measure spaces, II, Acta Math., 196 (2006), 133-177.
doi: 10.1007/s11511-006-0003-7. |
[69] |
K-T. Sturm and M-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923-940.
doi: 10.1002/cpa.20060. |
[70] |
M. Thieullen, Second order stochastic differential equations and non Gaussian reciprocal diffusions, Probab. Theory Related Fields, 97 (1993), 231-257.
doi: 10.1007/BF01199322. |
[71] |
M. Thieullen and J.-C. Zambrini, Symmetries in the stochastic calculus of variations, Probab. Theory Related Fields, 107 (1997), 401-427.
doi: 10.1007/s004400050091. |
[72] |
C. Villani, "Optimal Transport. Old and New," Grundlehren der mathematischen Wissenschaften, [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9. |
[73] |
J.-C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys., 27 (1986), 2307-2330.
doi: 10.1063/1.527002. |
show all references
References:
[1] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[2] |
S. Bernstein, Sur les liaisons entre les grandeurs aléatoires, Verhand. Internat. Math. Kongr. Zürich, (1932), no. Band I. |
[3] |
A. Beurling, An automormhism of product measures, Ann. Math., 72 (1960), 189-200.
doi: 10.2307/1970151. |
[4] |
P. Billingsley, "Convergence of Probability Measures," John Wiley & Sons, Inc., New York-London-Sydney 1968 xii+253 pp. |
[5] |
J. M. Borwein and A. S. Lewis, Decomposition of multivariate functions, Can. J. Math., 44 (1992), 463-482.
doi: 10.4153/CJM-1992-030-9. |
[6] |
P. Cattiaux and C. Léonard, Large deviations and Nelson's processes, Forum Math., 7 (1995), 95-115.
doi: 10.1515/form.1995.7.95. |
[7] |
K. L. Chung and J.-C. Zambrini, "Introduction to Random Time and Quantum Randomness," World Scientific, 2008. |
[8] |
D. Cordero Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219-257.
doi: 10.1007/s002220100160. |
[9] |
A. B. Cruzeiro, L. Wu and J.-C. Zambrini, Bernstein processes associated with a Markov process, Stochastic analysis and mathematical physics, ANESTOC'98. Proceedings of the Third International Workshop (Boston) (R. Rebolledo, ed.), Trends in Mathematics, Birkhäuser, 2000, pp. 41-71. |
[10] |
A. B. Cruzeiro and J.-C. Zambrini, Malliavin calculus and Euclidean quantum mechanics, I, Functional calculus. J. Funct. Anal., 96 (1991), 62-95.
doi: 10.1016/0022-1236(91)90073-E. |
[11] |
I. Csiszár, $I$-divergence geometry of probability distributions and minimization problems, Annals of Probability, 3 (1975), 146-158.
doi: 10.1214/aop/1176996454. |
[12] |
P. Dai Pra, A stochastic control approach to reciprocal diffusion processes, Appl. Math. Optim., 23 (1991), 313-329.
doi: 10.1007/BF01442404. |
[13] |
G. Dal Maso, "An Introduction to $\gamma$-convergence," Progress in Nonlinear Differential Equations and Their Applications 8, Birkhäuser Boston, Inc., Boston, MA, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[14] |
D. Dawson, L. Gorostiza and A. Wakolbinger, Schrödinger processes and large deviations, J. Math. Phys., 31 (1990), 2385-2388.
doi: 10.1063/1.528840. |
[15] |
D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, 20 (1987), 247-308.
doi: 10.1080/17442508708833446. |
[16] |
A. Dembo and O. Zeitouni, "Large Deviations Techniques and Applications," Second edition, Applications of Mathematics 38, Springer Verlag, New York, 1998. |
[17] |
P. A. M. Dirac, The lagrangian in quantum mechanics, Phys. Zeitsch. der Sowietunion, 3 (1933), 64-72. |
[18] |
J. L. Doob, "Stochastic Processes," John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London, 1953. viii+654 pp. |
[19] |
J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France, 85 (1957), 431-458. |
[20] |
J. L. Doob, "Classical Potential Theory and Its Probabilistic Counterpart," 2nd ed., Classics in Mathematics, Springer, 2000, (reprint of the 1984 first edition). |
[21] |
A. Dupuy and A. Galichon, Personality traits and the marriage market, Preprint. Available at SSRN: http://ssrn.com/abstract=2162812. |
[22] |
R. Feynman, "Feynman's Thesis. A New Approach to Quantum Theory," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. xxii+121 pp.
doi: 10.1142/9789812567635. |
[23] |
R. Feynman and A. Hibbs, "Quantum Mechanics and Path Integrals," McGraw-Hill, 1965. |
[24] |
H. Föllmer, "Random Fields and Diffusion Processes, in école D'été De Probabilités De Saint-Flour xv-xvii-1985-87," Lecture Notes in Mathematics, vol. 1362, Springer, Berlin, 1988.
doi: 10.1007/BFb0086180. |
[25] |
H. Föllmer and N. Gantert, Entropy minimization and Schrödinger processes in infinite dimensions, Ann. Probab., 25 (1997), 901-926.
doi: 10.1214/aop/1024404423. |
[26] |
R. Fortet, Résolution d'un système d'équations de M. Schrödinger, J. Math. Pures Appl. 9 (1940), 83. |
[27] |
A. Galichon and B. Salanie, Matching with trade-offs: Revealed preferences over competing characteristics, Preprint. http://hal.archives-ouvertes.fr/hal-00473173/en/. |
[28] |
B. Jamison, Reciprocal processes, Z. Wahrsch. verw. Geb., 30 (1974), 65-86.
doi: 10.1007/BF00532864. |
[29] |
B. Jamison, The Markov processes of Schrödinger, Z. Wahrsch. verw. Geb., 32 (1975), 323-331.
doi: 10.1007/BF00535844. |
[30] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[31] |
M. Kac, On distributions of certain Wiener functionals, Trans. Amer. Math. Soc., 65 (1949), 1-13.
doi: 10.1090/S0002-9947-1949-0027960-X. |
[32] |
A. Kolmogorov, Zur Theorie der Markoffschen Ketten, Mathematische Annalen, 112 (1936).
doi: 10.1007/BF01565412. |
[33] |
C. Léonard, Lazy random walks and optimal transport on graphs, Preprint. |
[34] |
C. Léonard, On the convexity of the entropy along entropic interpolations, Preprint. |
[35] | |
[36] |
C. Léonard, Stochastic derivatives and $h$-transforms of Markov processes, Preprint. |
[37] |
C. Léonard, Minimization of energy functionals applied to some inverse problems, J. Appl. Math. Optim., 44 (2001), 273-297.
doi: 10.1007/s00245-001-0019-5. |
[38] |
C. Léonard, Minimizers of energy functionals, Acta Math. Hungar., 93 (2001), 281-325.
doi: 10.1023/A:1017919422086. |
[39] |
C. Léonard, Entropic projections and dominating points, ESAIM Probab. Stat., 14 (2010), 343-381.
doi: 10.1051/ps/2009003. |
[40] |
C. Léonard, From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct. Anal., 262 (2012), 1879-1920. |
[41] |
C. Léonard, Girsanov theory under a finite entropy condition, Séminaire de probabilités XLIV., Lecture Notes in Mathematics 2046. Springer, 2012, pp. 429-465.
doi: 10.1007/978-3-642-27461-9_20. |
[42] |
C. Léonard, S. Rœlly and J.-C. Zambrini, On the time symmetry of some stochastic processes, Preprint. |
[43] |
J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math., 169 (2009), 903-991.
doi: 10.4007/annals.2009.169.903. |
[44] |
R. McCann, "A Convexity Theory for Interacting Gases and Equilibrium Crystals," PhD thesis, Princeton Univ., 1994. |
[45] |
R. McCann, A convexity principle for interacting gases, Adv. Math., 128 (1997), 153-179.
doi: 10.1006/aima.1997.1634. |
[46] |
T. Mikami, Variational processes from the weak forward equation, Comm. Math. Phys., 135 (1990), 19-40.
doi: 10.1007/BF02097655. |
[47] |
T. Mikami, Dynamical systems in the variational formulation of the Fokker-Planck equation by the Wasserstein metric, Appl. Math. Optim., 42 (2000), 203-227.
doi: 10.1007/s002450010008. |
[48] |
T. Mikami, Optimal control for absolutely continuous stochastic processes and the mass transportation problem, Electron. Comm. Probab., 7 (2002), 199-213.
doi: 10.1214/ECP.v7-1061. |
[49] |
T. Mikami, Monge's problem with a quadratic cost by the zero-noise limit of $h$-path processes, Probab. Theory Relat. Fields, 129 (2004), 245-260.
doi: 10.1007/s00440-004-0340-4. |
[50] |
T. Mikami, A simple proof of duality theorem for Monge-Kantorovich problem, Kodai Math. J., 29 (2006), 1-4.
doi: 10.2996/kmj/1143122381. |
[51] |
T. Mikami, Marginal problem for semimartingales via duality, International Conference for the 25th Anniversary of Viscosity Solutions, Gakuto International Series. Mathematical Sciences and Applications, vol. 30, 2008, pp. 133-152. |
[52] |
T. Mikami, Optimal transportation problem as stochastic mechanics, Selected papers on probability and statistics, 75-94, Amer. Math. Soc. Transl. Ser. 2, 227, Amer. Math. Soc., Providence, RI, 2009. |
[53] |
T. Mikami, A characterization of the Knothe-Rosenblatt processes by a convergence result, SIAM J. Control and Optim., 50 (2012), 1903-1920.
doi: 10.1137/100791129. |
[54] |
T. Mikami and M. Thieullen, Duality theorem for the stochastic optimal control problem, Stoch. Proc. Appl., 116 (2006), 1815-1835.
doi: 10.1016/j.spa.2006.04.014. |
[55] |
T. Mikami and M. Thieullen, Optimal transportation problem by stochastic optimal control, SIAM J. Control Optim., 47 (2008), 1127-1139.
doi: 10.1137/050631264. |
[56] |
M. Nagasawa, Transformations of diffusion and Schrödinger processes, Probab. Theory Related Fields, 82 (1989), 109-136.
doi: 10.1007/BF00340014. |
[57] |
M. Nagasawa, "Stochastic Processes in Quantum Physics," Monographs in Mathematics, vol. 94, Birkhäuser Verlag, Basel, 2000.
doi: 10.1007/978-3-0348-8383-2. |
[58] |
E. Nelson, "Dynamical Theories of Brownian Motion," Princeton University Press, Princeton, N.J. 1967 iii+142 pp. |
[59] |
E. Nelson, "Quantum Fluctuations," Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1985. |
[60] |
F. Otto, The geometry of dissipative evolution equations: The porous medieum equation., Comm. Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[61] |
F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.
doi: 10.1006/jfan.1999.3557. |
[62] |
D. Revuz and M. Yor, "Continuous Martingales and Brownian Motion," 3rd ed., Grundlehren der Mathematischen Wissenschaften, [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999.. |
[63] |
L. Rüschendorf and W. Thomsen, Note on the Schrödinger equation and $I$-projections, Statist. Probab. Lett., 17 (1993), 369-375.
doi: 10.1016/0167-7152(93)90257-J. |
[64] |
L. Rüschendorf and W. Thomsen, Closedness of sum spaces and the generalized Schrödinger problem, Theory Probab. Appl., 42 (1998), 483-494. |
[65] |
E. Schrödinger, Über die umkehrung der naturgesetze, Sitzungsberichte Preuss. Akad. Wiss. Berlin. Phys. Math. 144 (1931), 144-153. |
[66] |
E. Schrödinger, Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique, (French) Ann. Inst. H. Poincaré, 2 (1932), 269-310. |
[67] |
K-T. Sturm, On the geometry of metric measure spaces, I, Acta Math., 196 (2006), 65-131.
doi: 10.1007/s11511-006-0002-8. |
[68] |
K-T. Sturm, On the geometry of metric measure spaces, II, Acta Math., 196 (2006), 133-177.
doi: 10.1007/s11511-006-0003-7. |
[69] |
K-T. Sturm and M-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923-940.
doi: 10.1002/cpa.20060. |
[70] |
M. Thieullen, Second order stochastic differential equations and non Gaussian reciprocal diffusions, Probab. Theory Related Fields, 97 (1993), 231-257.
doi: 10.1007/BF01199322. |
[71] |
M. Thieullen and J.-C. Zambrini, Symmetries in the stochastic calculus of variations, Probab. Theory Related Fields, 107 (1997), 401-427.
doi: 10.1007/s004400050091. |
[72] |
C. Villani, "Optimal Transport. Old and New," Grundlehren der mathematischen Wissenschaften, [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-540-71050-9. |
[73] |
J.-C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys., 27 (1986), 2307-2330.
doi: 10.1063/1.527002. |
[1] |
Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795 |
[2] |
Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155 |
[3] |
Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397 |
[4] |
Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic and Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701 |
[5] |
Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033 |
[6] |
Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729 |
[7] |
Masayuki Asaoka, Kenichiro Yamamoto. On the large deviation rates of non-entropy-approachable measures. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4401-4410. doi: 10.3934/dcds.2013.33.4401 |
[8] |
Rémi Carles, Clotilde Fermanian-Kammerer, Norbert J. Mauser, Hans Peter Stimming. On the time evolution of Wigner measures for Schrödinger equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 559-585. doi: 10.3934/cpaa.2009.8.559 |
[9] |
Hideo Takaoka. Energy transfer model and large periodic boundary value problem for the quintic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6351-6378. doi: 10.3934/dcds.2020283 |
[10] |
Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063 |
[11] |
Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113 |
[12] |
Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881 |
[13] |
Seheon Ham, Hyerim Ko, Sanghyuk Lee. Circular average relative to fractal measures. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022100 |
[14] |
Fabio Camilli, Raul De Maio, Andrea Tosin. Transport of measures on networks. Networks and Heterogeneous Media, 2017, 12 (2) : 191-215. doi: 10.3934/nhm.2017008 |
[15] |
Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103 |
[16] |
Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805 |
[17] |
Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021021 |
[18] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[19] |
Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 |
[20] |
Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]