• Previous Article
    On landscape functions associated with transport paths
  • DCDS Home
  • This Issue
  • Next Article
    Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces
April  2014, 34(4): 1663-1681. doi: 10.3934/dcds.2014.34.1663

On the local theory of prescribed Jacobian equations

1. 

Centre for Mathematics and Its Applications, the Australian National University, Canberra, ACT 0200, Australia

Received  November 2012 Revised  May 2013 Published  October 2013

We develop the fundamentals of a local regularity theory for prescribed Jacobian equations which extend the corresponding results for optimal transportation equations. In this theory the cost function is extended to a generating function through dependence on an additional scalar variable. In particular we recover in this generality the local regularity theory for potentials of Ma, Trudinger and Wang, along with the subsequent development of the underlying convexity theory.
Citation: Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663
References:
[1]

L. Caffarelli, The regularity of mappings with a convex potential,, J. Amer. Math. Soc., 5 (1992), 99.  doi: 10.1090/S0894-0347-1992-1124980-8.  Google Scholar

[2]

L. Caffarelli, Boundary regularity of maps with convex potentials II,, Problems in mathematical analysis. No. 37. Ann. of Math., 144 (1996), 453.  doi: 10.2307/2118564.  Google Scholar

[3]

L. Caffarelli and V. I. Oliker, Weak solutions of one inverse problem in geometric optics., J. Math. Sci. (N. Y.), 154 (2008), 39.  doi: 10.1007/s10958-008-9152-x.  Google Scholar

[4]

Ph. Delanoë, Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator,, Ann. Inst. Henri Poincaré, 8 (1991), 443.  doi: 10.1016/j.anihpc.2007.03.001.  Google Scholar

[5]

A. Figalli, Y.-H Kim and R. J. McCann, Hölder continuity and injectivity of optimal maps,, Arch. Ration. Mech. Anal., 209 (2013), 747.  doi: 10.1007/s00205-013-0629-5.  Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1983).   Google Scholar

[7]

T. Graf and V. Oliker, An optimal mass transport approach to the near-field reflector problem in optimal design,, Inverse Problems, 28 (2012), 1.  doi: 10.1088/0266-5611/28/2/025001.  Google Scholar

[8]

C. E. Gutierrez, "The Monge -Ampère Equation,", Progress in Nonlinear Differential Equations and their Applications, (2001).  doi: 10.1007/978-1-4612-0195-3.  Google Scholar

[9]

F. Jiang, N. S. Trudinger and X.-P. Yang, On the Dirichlet Problem for Monge-Ampère type equations,, Calc. Var. Partial Differ. Equ., (): 00526.   Google Scholar

[10]

Y.-H. Kim and R. J. McCann, Continuity, curvature and the general covariance of optimal transportation,, J. Eur. Math. Soc., 12 (2010), 1009.  doi: 10.4171/JEMS/221.  Google Scholar

[11]

S. A. Kochengin and V. I. Oliker, Determination of reflector surfaces from near-field scattering data,, Inverse Problems, 13 (1997), 363.  doi: 10.1088/0266-5611/13/2/011.  Google Scholar

[12]

A. Karakhanyan and X.-J. Wang, On the reflector shape design,, J. Diff. Geom., 84 (2010), 561.   Google Scholar

[13]

P.-L. Lions, N. S. Trudinger and J. Urbas, Neumann problem for equations of Monge-Ampère type,, Comm. Pure Appl. Math., 39 (1986), 539.  doi: 10.1002/cpa.3160390405.  Google Scholar

[14]

G. Loeper, On the regularity of solutions of optimal transportation problems,, Acta Math., 202 (2009), 241.  doi: 10.1007/s11511-009-0037-8.  Google Scholar

[15]

J.-K. Liu, Hölder regularity of optimal mappings in optimal transportation,, Calc. Var. Partial Differ. Equ., 34 (2009), 435.  doi: 10.1007/s00526-008-0190-5.  Google Scholar

[16]

J.-K. Liu, Light reflection is nonlinear optimization,, Calc. Var. Partial Differ. Equ., 46 (2013), 861.  doi: 10.1007/s00526-012-0506-3.  Google Scholar

[17]

J.-K. Liu, A class of nonlinear optimization problems with potentials,, preprint (2012)., (2012).   Google Scholar

[18]

J.-K. Liu and N. S. Trudinger, On Pogorelov estimates for Monge-Ampère type equations,, Discrete Contin. Dyn. Syst., 28 (2010), 1121.  doi: 10.3934/dcds.2010.28.1121.  Google Scholar

[19]

J.-K. Liu and N. S. Trudinger, On classical solutions of near field reflection problems,, preprint (2013)., (2013).   Google Scholar

[20]

J.-K. Liu, N. S. Trudinger and X. J. Wang, Interior $C^{2,\alpha}$ regularity for potential functions in optimal transportation,, Comm. Partial Differential Equations, 35 (2010), 165.  doi: 10.1080/03605300903236609.  Google Scholar

[21]

X.-N. Ma, N. S. Trudinger and X.-J.Wang, Regularity of potential functions of the optimal transportation problem,, Arch. Rat. Mech. Anal., 177 (2005), 151.  doi: 10.1007/s00205-005-0362-9.  Google Scholar

[22]

S. T. Rachev and L. Ruschendorff, "Mass Transportation Problems,", Springer, (1998).   Google Scholar

[23]

N. S. Trudinger, Recent developments in elliptic partial differential equations of Monge-Ampère type,, International Congress of Mathematicians. Eur. Math. Soc., III (2006), 291.   Google Scholar

[24]

N. S. Trudinger, On the prescribed Jacobian equation,, Gakuto Intl. Series, 20 (2008), 243.   Google Scholar

[25]

N. S. Trudinger, On the local theory of prescribed Jacobian equations,, Conference in honor of 60th birthday of C.-S. Lin, (2011).   Google Scholar

[26]

N. S. Trudinger, On generated prescribed Jacobian equations,, Oberwolfach Reports, 38 (2011), 32.   Google Scholar

[27]

N. S. Trudinger, The local theory of prescribed Jacobian equations revisited,, (in preparation)., ().   Google Scholar

[28]

N. S. Trudinger and X.-J. Wang, The Monge-Ampère equation and its geometric applications,, in, (2008), 467.   Google Scholar

[29]

N. S. Trudinger and X.-J. Wang, On convexity notions in optimal transportation,, preprint (2008)., (2008).   Google Scholar

[30]

N. S. Trudinger and X.-J. Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8 (2009), 143.   Google Scholar

[31]

N. S. Trudinger and X.-J.Wang, On strict convexity and continuous differentiability of potential functions in optimal transportation,, Arch. Rat. Mech.. Anal., 192 (2009), 403.  doi: 10.1007/s00205-008-0147-z.  Google Scholar

[32]

J. Urbas, On the second boundary value problem for equations of Monge-Ampère type,, J. Reine Angew. Math., 487 (1997), 115.  doi: 10.1515/crll.1997.487.115.  Google Scholar

[33]

J. Vetois, Continuity and injectivity of optimal maps,, preprint (2011)., (2011).   Google Scholar

[34]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, (2003).  doi: 10.1007/b12016.  Google Scholar

[35]

C. Villani, "Optimal Transportation, Old and New,", Springer, (2008).   Google Scholar

show all references

References:
[1]

L. Caffarelli, The regularity of mappings with a convex potential,, J. Amer. Math. Soc., 5 (1992), 99.  doi: 10.1090/S0894-0347-1992-1124980-8.  Google Scholar

[2]

L. Caffarelli, Boundary regularity of maps with convex potentials II,, Problems in mathematical analysis. No. 37. Ann. of Math., 144 (1996), 453.  doi: 10.2307/2118564.  Google Scholar

[3]

L. Caffarelli and V. I. Oliker, Weak solutions of one inverse problem in geometric optics., J. Math. Sci. (N. Y.), 154 (2008), 39.  doi: 10.1007/s10958-008-9152-x.  Google Scholar

[4]

Ph. Delanoë, Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator,, Ann. Inst. Henri Poincaré, 8 (1991), 443.  doi: 10.1016/j.anihpc.2007.03.001.  Google Scholar

[5]

A. Figalli, Y.-H Kim and R. J. McCann, Hölder continuity and injectivity of optimal maps,, Arch. Ration. Mech. Anal., 209 (2013), 747.  doi: 10.1007/s00205-013-0629-5.  Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1983).   Google Scholar

[7]

T. Graf and V. Oliker, An optimal mass transport approach to the near-field reflector problem in optimal design,, Inverse Problems, 28 (2012), 1.  doi: 10.1088/0266-5611/28/2/025001.  Google Scholar

[8]

C. E. Gutierrez, "The Monge -Ampère Equation,", Progress in Nonlinear Differential Equations and their Applications, (2001).  doi: 10.1007/978-1-4612-0195-3.  Google Scholar

[9]

F. Jiang, N. S. Trudinger and X.-P. Yang, On the Dirichlet Problem for Monge-Ampère type equations,, Calc. Var. Partial Differ. Equ., (): 00526.   Google Scholar

[10]

Y.-H. Kim and R. J. McCann, Continuity, curvature and the general covariance of optimal transportation,, J. Eur. Math. Soc., 12 (2010), 1009.  doi: 10.4171/JEMS/221.  Google Scholar

[11]

S. A. Kochengin and V. I. Oliker, Determination of reflector surfaces from near-field scattering data,, Inverse Problems, 13 (1997), 363.  doi: 10.1088/0266-5611/13/2/011.  Google Scholar

[12]

A. Karakhanyan and X.-J. Wang, On the reflector shape design,, J. Diff. Geom., 84 (2010), 561.   Google Scholar

[13]

P.-L. Lions, N. S. Trudinger and J. Urbas, Neumann problem for equations of Monge-Ampère type,, Comm. Pure Appl. Math., 39 (1986), 539.  doi: 10.1002/cpa.3160390405.  Google Scholar

[14]

G. Loeper, On the regularity of solutions of optimal transportation problems,, Acta Math., 202 (2009), 241.  doi: 10.1007/s11511-009-0037-8.  Google Scholar

[15]

J.-K. Liu, Hölder regularity of optimal mappings in optimal transportation,, Calc. Var. Partial Differ. Equ., 34 (2009), 435.  doi: 10.1007/s00526-008-0190-5.  Google Scholar

[16]

J.-K. Liu, Light reflection is nonlinear optimization,, Calc. Var. Partial Differ. Equ., 46 (2013), 861.  doi: 10.1007/s00526-012-0506-3.  Google Scholar

[17]

J.-K. Liu, A class of nonlinear optimization problems with potentials,, preprint (2012)., (2012).   Google Scholar

[18]

J.-K. Liu and N. S. Trudinger, On Pogorelov estimates for Monge-Ampère type equations,, Discrete Contin. Dyn. Syst., 28 (2010), 1121.  doi: 10.3934/dcds.2010.28.1121.  Google Scholar

[19]

J.-K. Liu and N. S. Trudinger, On classical solutions of near field reflection problems,, preprint (2013)., (2013).   Google Scholar

[20]

J.-K. Liu, N. S. Trudinger and X. J. Wang, Interior $C^{2,\alpha}$ regularity for potential functions in optimal transportation,, Comm. Partial Differential Equations, 35 (2010), 165.  doi: 10.1080/03605300903236609.  Google Scholar

[21]

X.-N. Ma, N. S. Trudinger and X.-J.Wang, Regularity of potential functions of the optimal transportation problem,, Arch. Rat. Mech. Anal., 177 (2005), 151.  doi: 10.1007/s00205-005-0362-9.  Google Scholar

[22]

S. T. Rachev and L. Ruschendorff, "Mass Transportation Problems,", Springer, (1998).   Google Scholar

[23]

N. S. Trudinger, Recent developments in elliptic partial differential equations of Monge-Ampère type,, International Congress of Mathematicians. Eur. Math. Soc., III (2006), 291.   Google Scholar

[24]

N. S. Trudinger, On the prescribed Jacobian equation,, Gakuto Intl. Series, 20 (2008), 243.   Google Scholar

[25]

N. S. Trudinger, On the local theory of prescribed Jacobian equations,, Conference in honor of 60th birthday of C.-S. Lin, (2011).   Google Scholar

[26]

N. S. Trudinger, On generated prescribed Jacobian equations,, Oberwolfach Reports, 38 (2011), 32.   Google Scholar

[27]

N. S. Trudinger, The local theory of prescribed Jacobian equations revisited,, (in preparation)., ().   Google Scholar

[28]

N. S. Trudinger and X.-J. Wang, The Monge-Ampère equation and its geometric applications,, in, (2008), 467.   Google Scholar

[29]

N. S. Trudinger and X.-J. Wang, On convexity notions in optimal transportation,, preprint (2008)., (2008).   Google Scholar

[30]

N. S. Trudinger and X.-J. Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8 (2009), 143.   Google Scholar

[31]

N. S. Trudinger and X.-J.Wang, On strict convexity and continuous differentiability of potential functions in optimal transportation,, Arch. Rat. Mech.. Anal., 192 (2009), 403.  doi: 10.1007/s00205-008-0147-z.  Google Scholar

[32]

J. Urbas, On the second boundary value problem for equations of Monge-Ampère type,, J. Reine Angew. Math., 487 (1997), 115.  doi: 10.1515/crll.1997.487.115.  Google Scholar

[33]

J. Vetois, Continuity and injectivity of optimal maps,, preprint (2011)., (2011).   Google Scholar

[34]

C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, (2003).  doi: 10.1007/b12016.  Google Scholar

[35]

C. Villani, "Optimal Transportation, Old and New,", Springer, (2008).   Google Scholar

[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[7]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[8]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[18]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[19]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[20]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]