• Previous Article
    Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras
  • DCDS Home
  • This Issue
  • Next Article
    Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential
May  2014, 34(5): 1775-1791. doi: 10.3934/dcds.2014.34.1775

Bistable travelling waves for nonlocal reaction diffusion equations

1. 

Univ. Montpellier 2, I3M, UMR CNRS 5149, CC051, Place Eugène Bataillon, 34095 Montpellier Cedex 5

2. 

INRA, Equipe BIOSP, Centre de Recherche d'Avignon, Domaine Saint Paul, Site Agroparc, 84914 Avignon cedex 9

3. 

CEFE, UMR 5175, CNRS, 1919 Route de Mende, 34293 Montpellier, France

Received  March 2013 Revised  August 2013 Published  October 2013

We are concerned with travelling wave solutions arising in a reaction diffusion equation with bistable and nonlocal nonlinearity, for which the comparison principle does not hold. Stability of the equilibrium $u\equiv 1$ is not assumed. We construct a travelling wave solution connecting 0 to an unknown steady state, which is "above and away", from the intermediate equilibrium. For focusing kernels we prove that, as expected, the wave connects 0 to 1. Our results also apply readily to the nonlocal ignition case.
Citation: Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775
References:
[1]

M. Alfaro and J. Coville, Rapid travelling waves in the nonlocal Fisher equation connect two unstable states,, Appl. Math. Lett., 25 (2012), 2095.  doi: 10.1016/j.aml.2012.05.006.  Google Scholar

[2]

M. Alfaro, J. Coville and G. Raoul, Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypical trait,, to appear in Comm. Partial Differential Equations., ().  doi: 10.1080/03605302.2013.828069.  Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics (Program, 446 (1975), 5.   Google Scholar

[4]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[5]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[6]

H. Berestycki, B. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits,, SIAM J. Math. Anal., 16 (1985), 1207.  doi: 10.1137/0516088.  Google Scholar

[7]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[8]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497.   Google Scholar

[9]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation,, Nonlinearity, 24 (2011), 3043.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[10]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Rational Mech. Anal., 65 (1977), 335.   Google Scholar

[11]

S. Genieys, V. Volpert and P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of resources,, Math. Model. Nat. Phenom., 1 (2006), 65.  doi: 10.1051/mmnp:2006004.  Google Scholar

[12]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Grundlehren der Mathematischen Wissenschaften, (1977).   Google Scholar

[13]

A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation,, J. Differential Equations, 250 (2011), 1767.  doi: 10.1016/j.jde.2010.11.011.  Google Scholar

[14]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts,, Discrete Contin. Dyn. Syst., 13 (2005), 1069.  doi: 10.3934/dcds.2005.13.1069.  Google Scholar

[15]

Ja. I. Kanel, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory,, (Russian) Mat. Sb., 59 (1962), 245.   Google Scholar

[16]

O. A. Ladyženskaja and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations,, translated from the Russian by Scripta Technica, (1968).   Google Scholar

[17]

G. Nadin, B. Perthame, L. Rossi and L. Ryzhik, Wave-like solutions for nonlocal reaction-diffusion equations: A toy model,, Mathematical Modelling of Natural Phenomena, 8 (2013), 33.  doi: 10.1051/mmnp/20138304.  Google Scholar

[18]

G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Math. Acad. Sci. Paris, 349 (2011), 553.  doi: 10.1016/j.crma.2011.03.008.  Google Scholar

[19]

A. Volpert, V. Volpert and V. Volpert, Travelling Wave Solutions of Parabolic Systems,, Translated from the Russian manuscript by James F. Heyda. Translations of Mathematical Monographs, (1994).   Google Scholar

[20]

Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

show all references

References:
[1]

M. Alfaro and J. Coville, Rapid travelling waves in the nonlocal Fisher equation connect two unstable states,, Appl. Math. Lett., 25 (2012), 2095.  doi: 10.1016/j.aml.2012.05.006.  Google Scholar

[2]

M. Alfaro, J. Coville and G. Raoul, Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypical trait,, to appear in Comm. Partial Differential Equations., ().  doi: 10.1080/03605302.2013.828069.  Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics (Program, 446 (1975), 5.   Google Scholar

[4]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[5]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[6]

H. Berestycki, B. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits,, SIAM J. Math. Anal., 16 (1985), 1207.  doi: 10.1137/0516088.  Google Scholar

[7]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[8]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 497.   Google Scholar

[9]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation,, Nonlinearity, 24 (2011), 3043.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[10]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Rational Mech. Anal., 65 (1977), 335.   Google Scholar

[11]

S. Genieys, V. Volpert and P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of resources,, Math. Model. Nat. Phenom., 1 (2006), 65.  doi: 10.1051/mmnp:2006004.  Google Scholar

[12]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Grundlehren der Mathematischen Wissenschaften, (1977).   Google Scholar

[13]

A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation,, J. Differential Equations, 250 (2011), 1767.  doi: 10.1016/j.jde.2010.11.011.  Google Scholar

[14]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts,, Discrete Contin. Dyn. Syst., 13 (2005), 1069.  doi: 10.3934/dcds.2005.13.1069.  Google Scholar

[15]

Ja. I. Kanel, Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory,, (Russian) Mat. Sb., 59 (1962), 245.   Google Scholar

[16]

O. A. Ladyženskaja and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations,, translated from the Russian by Scripta Technica, (1968).   Google Scholar

[17]

G. Nadin, B. Perthame, L. Rossi and L. Ryzhik, Wave-like solutions for nonlocal reaction-diffusion equations: A toy model,, Mathematical Modelling of Natural Phenomena, 8 (2013), 33.  doi: 10.1051/mmnp/20138304.  Google Scholar

[18]

G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Math. Acad. Sci. Paris, 349 (2011), 553.  doi: 10.1016/j.crma.2011.03.008.  Google Scholar

[19]

A. Volpert, V. Volpert and V. Volpert, Travelling Wave Solutions of Parabolic Systems,, Translated from the Russian manuscript by James F. Heyda. Translations of Mathematical Monographs, (1994).   Google Scholar

[20]

Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[1]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[2]

C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872

[3]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[4]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[5]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020033

[6]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[7]

Sheng-Chen Fu. Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 189-196. doi: 10.3934/dcdsb.2011.16.189

[8]

Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041

[9]

Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242

[10]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[11]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[12]

Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115

[13]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[14]

Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516

[15]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[16]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[17]

François Hamel, Jean-Michel Roquejoffre. Heteroclinic connections for multidimensional bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 101-123. doi: 10.3934/dcdss.2011.4.101

[18]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[19]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[20]

H. J. Hupkes, L. Morelli. Travelling corners for spatially discrete reaction-diffusion systems. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1609-1667. doi: 10.3934/cpaa.2020058

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]