May  2014, 34(5): 1793-1809. doi: 10.3934/dcds.2014.34.1793

Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras

1. 

Institute of Mathematics of NAS of Ukraine, Tereshchenkivs'ka str., 3, 01601 Kyiv, Ukraine, Ukraine

2. 

Universität zu Lübeck, Institut für Mathematik, Ratzeburger Allee 160, 23562 Lübeck, Germany

Received  April 2013 Revised  July 2013 Published  October 2013

In a recent paper, K. Keller has given a characterization of the Kolmogorov-Sinai entropy of a discrete-time measure-preserving dynamical system on the base of an increasing sequence of special partitions. These partitions are constructed from order relations obtained via a given real-valued random vector, which can be interpreted as a collection of observables on the system and is assumed to separate points of it. In the present paper we relax the separation condition in order to generalize the given characterization of Kolmogorov-Sinai entropy, providing a statement on equivalence of $\sigma$-algebras. On its base we show that in the case that a dynamical system is living on an $m$-dimensional smooth manifold and the underlying measure is Lebesgue absolute continuous, the set of smooth random vectors of dimension $n>m$ with given characterization of Kolmogorov-Sinai entropy is large in a certain sense.
Citation: Alexandra Antoniouk, Karsten Keller, Sergiy Maksymenko. Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1793-1809. doi: 10.3934/dcds.2014.34.1793
References:
[1]

J. M. Amigó, The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized, Physica D, 241 (2012), 789-793. doi: 10.1016/j.physd.2012.01.004.

[2]

J. M. Amigó, Permutation Complexity in Dynamical Systems. Ordinal Patterns, Permutation Entropy and All That, Springer Series in Synergetics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04084-9.

[3]

J. M. Amigó, M. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D, 210 (2005), 77-95. doi: 10.1016/j.physd.2005.07.006.

[4]

C. Bandt, G. Keller and B. Pompe, Entropy of Interval Maps Via Permutations, Nonlinearity, 15 (2002), 1595-1602. doi: 10.1088/0951-7715/15/5/312.

[5]

C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102.

[6]

M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York, 1973.

[7]

V. Guillemin and A. Polak, Differential Topology, Prentice-Hall, Englewood Cliff, NJ, 1974.

[8]

M. Hirsch, Differential Topology, Graduate Texts in Mathematics, Vol. 33, Springer-Verlag, New York-Heidelberg, 1976.

[9]

B. R. Hunt, T. Sauer and J. A. Yourke, Prevalence: A translation-invariant "almost every'' on infinite-dimensional spaces, Bull. Amer. Math. Soc., 27 (1992), 217-238. doi: 10.1090/S0273-0979-1992-00328-2.

[10]

K. Keller, Permutations and the Kolmogorov-Sinai entropy, Discrete Contin. Dyn. Syst., 32 (2012), 891-900. doi: 10.3934/dcds.2012.32.891.

[11]

K. Keller, A. Unakafov and V. Unakafova, On the Relation of KS Entropy and Permutation Entropy, Physica D, 241 (2012), 1477-1481. doi: 10.1016/j.physd.2012.05.010.

[12]

K. Keller and M. Sinn, Kolmogorov-Sinai entropy from the ordinal viewpoint, Physica D, 239 (2010), 997-1000. doi: 10.1016/j.physd.2010.02.006.

[13]

K. Keller and M. Sinn, A standardized approach to the Kolmogorov-Sinai entropy, Nonlinearity, 22 (2009), 2417-2422. doi: 10.1088/0951-7715/22/10/006.

[14]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.

[15]

J. Milnor, Differential Topology, Mimeographed notes, Princeton University, New Jersey, 1958.

[16]

F. Takens, Detecting Strange Attractors in Turbulence, in: Dynamical Systems and Turbulence (eds. D. A. Rand, L. S. Young), Lecture Notes in Mathematics 898, Springer-Verlag, Berlin-New York, 1981, 366-381.

[17]

T. Sauer, J. Yorke and M. Casdagli, Embeddology, J. Stat. Phys., 65 (1991), 579-616. doi: 10.1007/BF01053745.

[18]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer-Verlag, New York, 1982.

show all references

References:
[1]

J. M. Amigó, The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized, Physica D, 241 (2012), 789-793. doi: 10.1016/j.physd.2012.01.004.

[2]

J. M. Amigó, Permutation Complexity in Dynamical Systems. Ordinal Patterns, Permutation Entropy and All That, Springer Series in Synergetics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04084-9.

[3]

J. M. Amigó, M. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D, 210 (2005), 77-95. doi: 10.1016/j.physd.2005.07.006.

[4]

C. Bandt, G. Keller and B. Pompe, Entropy of Interval Maps Via Permutations, Nonlinearity, 15 (2002), 1595-1602. doi: 10.1088/0951-7715/15/5/312.

[5]

C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102.

[6]

M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York, 1973.

[7]

V. Guillemin and A. Polak, Differential Topology, Prentice-Hall, Englewood Cliff, NJ, 1974.

[8]

M. Hirsch, Differential Topology, Graduate Texts in Mathematics, Vol. 33, Springer-Verlag, New York-Heidelberg, 1976.

[9]

B. R. Hunt, T. Sauer and J. A. Yourke, Prevalence: A translation-invariant "almost every'' on infinite-dimensional spaces, Bull. Amer. Math. Soc., 27 (1992), 217-238. doi: 10.1090/S0273-0979-1992-00328-2.

[10]

K. Keller, Permutations and the Kolmogorov-Sinai entropy, Discrete Contin. Dyn. Syst., 32 (2012), 891-900. doi: 10.3934/dcds.2012.32.891.

[11]

K. Keller, A. Unakafov and V. Unakafova, On the Relation of KS Entropy and Permutation Entropy, Physica D, 241 (2012), 1477-1481. doi: 10.1016/j.physd.2012.05.010.

[12]

K. Keller and M. Sinn, Kolmogorov-Sinai entropy from the ordinal viewpoint, Physica D, 239 (2010), 997-1000. doi: 10.1016/j.physd.2010.02.006.

[13]

K. Keller and M. Sinn, A standardized approach to the Kolmogorov-Sinai entropy, Nonlinearity, 22 (2009), 2417-2422. doi: 10.1088/0951-7715/22/10/006.

[14]

A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.

[15]

J. Milnor, Differential Topology, Mimeographed notes, Princeton University, New Jersey, 1958.

[16]

F. Takens, Detecting Strange Attractors in Turbulence, in: Dynamical Systems and Turbulence (eds. D. A. Rand, L. S. Young), Lecture Notes in Mathematics 898, Springer-Verlag, Berlin-New York, 1981, 366-381.

[17]

T. Sauer, J. Yorke and M. Casdagli, Embeddology, J. Stat. Phys., 65 (1991), 579-616. doi: 10.1007/BF01053745.

[18]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer-Verlag, New York, 1982.

[1]

Karsten Keller. Permutations and the Kolmogorov-Sinai entropy. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 891-900. doi: 10.3934/dcds.2012.32.891

[2]

Tim Gutjahr, Karsten Keller. Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4207-4224. doi: 10.3934/dcds.2019170

[3]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[4]

Zehan Lin, Chongbin Xu, Caidi Zhao, Chujin Li. Statistical solution and Kolmogorov entropy for the impulsive discrete Klein-Gordon-Schrödinger-type equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022065

[5]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[6]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[7]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[8]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[9]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[10]

José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301

[11]

Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226

[12]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[13]

Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395

[14]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[15]

Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186

[16]

Vladimír Špitalský. Local correlation entropy. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

[17]

Baolin He. Entropy of diffeomorphisms of line. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4753-4766. doi: 10.3934/dcds.2017204

[18]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[19]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[20]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (9)

[Back to Top]