May  2014, 34(5): 1793-1809. doi: 10.3934/dcds.2014.34.1793

Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras

1. 

Institute of Mathematics of NAS of Ukraine, Tereshchenkivs'ka str., 3, 01601 Kyiv, Ukraine, Ukraine

2. 

Universität zu Lübeck, Institut für Mathematik, Ratzeburger Allee 160, 23562 Lübeck, Germany

Received  April 2013 Revised  July 2013 Published  October 2013

In a recent paper, K. Keller has given a characterization of the Kolmogorov-Sinai entropy of a discrete-time measure-preserving dynamical system on the base of an increasing sequence of special partitions. These partitions are constructed from order relations obtained via a given real-valued random vector, which can be interpreted as a collection of observables on the system and is assumed to separate points of it. In the present paper we relax the separation condition in order to generalize the given characterization of Kolmogorov-Sinai entropy, providing a statement on equivalence of $\sigma$-algebras. On its base we show that in the case that a dynamical system is living on an $m$-dimensional smooth manifold and the underlying measure is Lebesgue absolute continuous, the set of smooth random vectors of dimension $n>m$ with given characterization of Kolmogorov-Sinai entropy is large in a certain sense.
Citation: Alexandra Antoniouk, Karsten Keller, Sergiy Maksymenko. Kolmogorov-Sinai entropy via separation properties of order-generated $\sigma$-algebras. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1793-1809. doi: 10.3934/dcds.2014.34.1793
References:
[1]

J. M. Amigó, The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized,, Physica D, 241 (2012), 789.  doi: 10.1016/j.physd.2012.01.004.  Google Scholar

[2]

J. M. Amigó, Permutation Complexity in Dynamical Systems. Ordinal Patterns, Permutation Entropy and All That,, Springer Series in Synergetics, (2010).  doi: 10.1007/978-3-642-04084-9.  Google Scholar

[3]

J. M. Amigó, M. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems,, Physica D, 210 (2005), 77.  doi: 10.1016/j.physd.2005.07.006.  Google Scholar

[4]

C. Bandt, G. Keller and B. Pompe, Entropy of Interval Maps Via Permutations,, Nonlinearity, 15 (2002), 1595.  doi: 10.1088/0951-7715/15/5/312.  Google Scholar

[5]

C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series,, Phys. Rev. Lett., 88 (2002).   Google Scholar

[6]

M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities,, Graduate Texts in Mathematics, (1973).   Google Scholar

[7]

V. Guillemin and A. Polak, Differential Topology,, Prentice-Hall, (1974).   Google Scholar

[8]

M. Hirsch, Differential Topology,, Graduate Texts in Mathematics, (1976).   Google Scholar

[9]

B. R. Hunt, T. Sauer and J. A. Yourke, Prevalence: A translation-invariant "almost every'' on infinite-dimensional spaces,, Bull. Amer. Math. Soc., 27 (1992), 217.  doi: 10.1090/S0273-0979-1992-00328-2.  Google Scholar

[10]

K. Keller, Permutations and the Kolmogorov-Sinai entropy,, Discrete Contin. Dyn. Syst., 32 (2012), 891.  doi: 10.3934/dcds.2012.32.891.  Google Scholar

[11]

K. Keller, A. Unakafov and V. Unakafova, On the Relation of KS Entropy and Permutation Entropy,, Physica D, 241 (2012), 1477.  doi: 10.1016/j.physd.2012.05.010.  Google Scholar

[12]

K. Keller and M. Sinn, Kolmogorov-Sinai entropy from the ordinal viewpoint,, Physica D, 239 (2010), 997.  doi: 10.1016/j.physd.2010.02.006.  Google Scholar

[13]

K. Keller and M. Sinn, A standardized approach to the Kolmogorov-Sinai entropy,, Nonlinearity, 22 (2009), 2417.  doi: 10.1088/0951-7715/22/10/006.  Google Scholar

[14]

A. S. Kechris, Classical Descriptive Set Theory,, Graduate Texts in Mathematics, (1995).  doi: 10.1007/978-1-4612-4190-4.  Google Scholar

[15]

J. Milnor, Differential Topology,, Mimeographed notes, (1958).   Google Scholar

[16]

F. Takens, Detecting Strange Attractors in Turbulence,, in: Dynamical Systems and Turbulence (eds. D. A. Rand, (1981), 366.   Google Scholar

[17]

T. Sauer, J. Yorke and M. Casdagli, Embeddology,, J. Stat. Phys., 65 (1991), 579.  doi: 10.1007/BF01053745.  Google Scholar

[18]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

show all references

References:
[1]

J. M. Amigó, The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized,, Physica D, 241 (2012), 789.  doi: 10.1016/j.physd.2012.01.004.  Google Scholar

[2]

J. M. Amigó, Permutation Complexity in Dynamical Systems. Ordinal Patterns, Permutation Entropy and All That,, Springer Series in Synergetics, (2010).  doi: 10.1007/978-3-642-04084-9.  Google Scholar

[3]

J. M. Amigó, M. B. Kennel and L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems,, Physica D, 210 (2005), 77.  doi: 10.1016/j.physd.2005.07.006.  Google Scholar

[4]

C. Bandt, G. Keller and B. Pompe, Entropy of Interval Maps Via Permutations,, Nonlinearity, 15 (2002), 1595.  doi: 10.1088/0951-7715/15/5/312.  Google Scholar

[5]

C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series,, Phys. Rev. Lett., 88 (2002).   Google Scholar

[6]

M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities,, Graduate Texts in Mathematics, (1973).   Google Scholar

[7]

V. Guillemin and A. Polak, Differential Topology,, Prentice-Hall, (1974).   Google Scholar

[8]

M. Hirsch, Differential Topology,, Graduate Texts in Mathematics, (1976).   Google Scholar

[9]

B. R. Hunt, T. Sauer and J. A. Yourke, Prevalence: A translation-invariant "almost every'' on infinite-dimensional spaces,, Bull. Amer. Math. Soc., 27 (1992), 217.  doi: 10.1090/S0273-0979-1992-00328-2.  Google Scholar

[10]

K. Keller, Permutations and the Kolmogorov-Sinai entropy,, Discrete Contin. Dyn. Syst., 32 (2012), 891.  doi: 10.3934/dcds.2012.32.891.  Google Scholar

[11]

K. Keller, A. Unakafov and V. Unakafova, On the Relation of KS Entropy and Permutation Entropy,, Physica D, 241 (2012), 1477.  doi: 10.1016/j.physd.2012.05.010.  Google Scholar

[12]

K. Keller and M. Sinn, Kolmogorov-Sinai entropy from the ordinal viewpoint,, Physica D, 239 (2010), 997.  doi: 10.1016/j.physd.2010.02.006.  Google Scholar

[13]

K. Keller and M. Sinn, A standardized approach to the Kolmogorov-Sinai entropy,, Nonlinearity, 22 (2009), 2417.  doi: 10.1088/0951-7715/22/10/006.  Google Scholar

[14]

A. S. Kechris, Classical Descriptive Set Theory,, Graduate Texts in Mathematics, (1995).  doi: 10.1007/978-1-4612-4190-4.  Google Scholar

[15]

J. Milnor, Differential Topology,, Mimeographed notes, (1958).   Google Scholar

[16]

F. Takens, Detecting Strange Attractors in Turbulence,, in: Dynamical Systems and Turbulence (eds. D. A. Rand, (1981), 366.   Google Scholar

[17]

T. Sauer, J. Yorke and M. Casdagli, Embeddology,, J. Stat. Phys., 65 (1991), 579.  doi: 10.1007/BF01053745.  Google Scholar

[18]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[1]

Karsten Keller. Permutations and the Kolmogorov-Sinai entropy. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 891-900. doi: 10.3934/dcds.2012.32.891

[2]

Tim Gutjahr, Karsten Keller. Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4207-4224. doi: 10.3934/dcds.2019170

[3]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[4]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 367-385. doi: 10.3934/dcds.2004.10.367

[5]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[6]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[7]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[8]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[9]

José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301

[10]

Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226

[11]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[12]

Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395

[13]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[14]

Baolin He. Entropy of diffeomorphisms of line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4753-4766. doi: 10.3934/dcds.2017204

[15]

Lluís Alsedà, David Juher, Deborah M. King, Francesc Mañosas. Maximizing entropy of cycles on trees. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3237-3276. doi: 10.3934/dcds.2013.33.3237

[16]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[17]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

[18]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[19]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[20]

Laura Luzzi, Stefano Marmi. On the entropy of Japanese continued fractions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 673-711. doi: 10.3934/dcds.2008.20.673

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]