Advanced Search
Article Contents
Article Contents

When are the invariant submanifolds of symplectic dynamics Lagrangian?

Abstract / Introduction Related Papers Cited by
  • Let $\mathcal{L}$ be a $D$-dimensional submanifold of a $2D$ dimensional exact symplectic manifold $(M, \omega)$ and let $f: M\rightarrow M$ be a symplectic diffeomorphism. In this article, we deal with the link between the dynamics $f_{|\mathcal{L}}$ restricted to $\mathcal{L}$ and the geometry of $\mathcal{L}$ (is $\mathcal{L}$ Lagrangian, is it smooth, is it a graph … ?).
        We prove different kinds of results.
        1. for $D=3$, we prove that is $\mathcal{L}$ if a torus that carries some characteristic loop, then either $\mathcal{L}$ is Lagrangian or $f_{|\mathcal{L}}$ can not be minimal (i.e. all the orbits are dense) with $(f^k_{|\mathcal{L}})$ equilipschitz;
        2. for a Tonelli Hamiltonian of $T^*\mathbb{T}^3$, we give an example of an invariant submanifold $\mathcal{L}$ with no conjugate points that is not Lagrangian and such that for every $f:T^*\mathbb{T}^3\rightarrow T^*\mathbb{T}^3$ symplectic, if $f(\mathcal{L})=\mathcal{L}$, then $\mathcal{L}$ is not minimal;
        3. with some hypothesis for the restricted dynamics, we prove that some invariant Lipschitz $D$-dimensional submanifolds of Tonelli Hamiltonian flows are in fact Lagrangian, $C^1$ and graphs;
        4.we give similar results for $C^1$ submanifolds with weaker dynamical assumptions.
    Mathematics Subject Classification: Primary: 37J05; Secondary: 70H03, 70H05, 37J50, 37J10.


    \begin{equation} \\ \end{equation}
  • [1]

    M.-C. Arnaud, Fibrés de Green et régularité des graphes $C^0$-lagrangiens invariants par un flot de Tonelli, (French) [Green fibrations and regularity of $C^0$-Lagrangian graphs invariant under a Tonelli flow], Ann. Henri Poincaré, 9 (2008), 881-926.doi: 10.1007/s00023-008-0375-7.


    M.-C. Arnaud, On a theorem due to Birkhoff, Geometric and Functional Analysis, 20 (2010), 1307-1316.doi: 10.1007/s00039-010-0091-6.


    V. Arnol'd and A. Avez, Ergodic problems of classical mechanics, Translated from the French by A. Avez. W. A. Benjamin, Inc., New York-Amsterdam, 1968.


    P. Bernard, The dynamics of pseudographs in convex Hamiltonian systems, J. Amer. Math. Soc., 21 (2008), 615-669.doi: 10.1090/S0894-0347-08-00591-2.


    P. Bernard and J. dos Santos, A geometric definition of the Ma-Mather set and a theorem of Marie-Claude Arnaud, Math. Proc. Cambridge Philos. Soc., 152 (2012), 167-178.doi: 10.1017/S0305004111000685.


    M. Bialy, Aubry-Mather sets and Birkhoff's theorem for geodesic flows on the two-dimensional torus, Comm. Math. Phys., 126 (1989), 13-24.doi: 10.1007/BF02124329.


    M. Bialy and L. Polterovich, Hamiltonian diffeomorphisms and Lagrangian distributions, Geom. Funct. Anal., 2 (1992), 173-210.doi: 10.1007/BF01896972.


    M. Bialy and L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom, Invent. Math., 97 (1989), 291-303.doi: 10.1007/BF01389043.


    M. Bialy and L. Polterovich, Hamiltonian systems, Lagrangian tori and Birkhoff's theorem, Math. Ann., 292 (1992), 619-627.doi: 10.1007/BF01444639.


    J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d'après Kolmogorov, Arnol'd, Moser, Rüssmann, Zehnder, Herman, Pöschel,…), (French) [Invariant tori of Hamiltonian dynamical systems (following Kolmogorov, Arnol'd, Moser, Rüssmann, Zehnder, Herman, Pöschel,…)] Seminar Bourbaki, Vol. 1984/85. Astérisque No., 133-134 (1986), 113-157.


    M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, (French)Inst. Hautes Études Sci. Publ. Math. No., 49 (1979), 5-233.


    M. Herman, Inégalités "a priori''pour des tores lagrangiens invariants par des difféomorphismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms] Inst. Hautes Études Sci. Publ. Math. No., 70 (1989), 47-101 (1990).doi: 10.1007/BF02698874.


    J. Milnor, Topology from the differentiable viewpoint, Based on notes by David W. Weaver. Revised reprint of the 1965 original. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997.


    M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin-New York, (1977). ii+149 pp


    A. Weinstein, Lectures on symplectic manifolds, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8-12, 1976. Regional Conference Series in Mathematics, No. 29. American Mathematical Society, Providence, R.I., (1977). iv+48 pp.

  • 加载中

Article Metrics

HTML views() PDF downloads(141) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint