May  2014, 34(5): 1811-1827. doi: 10.3934/dcds.2014.34.1811

When are the invariant submanifolds of symplectic dynamics Lagrangian?

1. 

Avignon University, LMA EA 2151, F-84000, Avignon, France

Received  March 2013 Revised  July 2013 Published  October 2013

Let $\mathcal{L}$ be a $D$-dimensional submanifold of a $2D$ dimensional exact symplectic manifold $(M, \omega)$ and let $f: M\rightarrow M$ be a symplectic diffeomorphism. In this article, we deal with the link between the dynamics $f_{|\mathcal{L}}$ restricted to $\mathcal{L}$ and the geometry of $\mathcal{L}$ (is $\mathcal{L}$ Lagrangian, is it smooth, is it a graph … ?).
    We prove different kinds of results.
    1. for $D=3$, we prove that is $\mathcal{L}$ if a torus that carries some characteristic loop, then either $\mathcal{L}$ is Lagrangian or $f_{|\mathcal{L}}$ can not be minimal (i.e. all the orbits are dense) with $(f^k_{|\mathcal{L}})$ equilipschitz;
    2. for a Tonelli Hamiltonian of $T^*\mathbb{T}^3$, we give an example of an invariant submanifold $\mathcal{L}$ with no conjugate points that is not Lagrangian and such that for every $f:T^*\mathbb{T}^3\rightarrow T^*\mathbb{T}^3$ symplectic, if $f(\mathcal{L})=\mathcal{L}$, then $\mathcal{L}$ is not minimal;
    3. with some hypothesis for the restricted dynamics, we prove that some invariant Lipschitz $D$-dimensional submanifolds of Tonelli Hamiltonian flows are in fact Lagrangian, $C^1$ and graphs;
    4.we give similar results for $C^1$ submanifolds with weaker dynamical assumptions.
Citation: Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811
References:
[1]

M.-C. Arnaud, Fibrés de Green et régularité des graphes $C^0$-lagrangiens invariants par un flot de Tonelli,, (French) [Green fibrations and regularity of $C^0$-Lagrangian graphs invariant under a Tonelli flow], 9 (2008), 881.  doi: 10.1007/s00023-008-0375-7.  Google Scholar

[2]

M.-C. Arnaud, On a theorem due to Birkhoff,, Geometric and Functional Analysis, 20 (2010), 1307.  doi: 10.1007/s00039-010-0091-6.  Google Scholar

[3]

V. Arnol'd and A. Avez, Ergodic problems of classical mechanics,, Translated from the French by A. Avez. W. A. Benjamin, (1968).   Google Scholar

[4]

P. Bernard, The dynamics of pseudographs in convex Hamiltonian systems,, J. Amer. Math. Soc., 21 (2008), 615.  doi: 10.1090/S0894-0347-08-00591-2.  Google Scholar

[5]

P. Bernard and J. dos Santos, A geometric definition of the Ma-Mather set and a theorem of Marie-Claude Arnaud,, Math. Proc. Cambridge Philos. Soc., 152 (2012), 167.  doi: 10.1017/S0305004111000685.  Google Scholar

[6]

M. Bialy, Aubry-Mather sets and Birkhoff's theorem for geodesic flows on the two-dimensional torus,, Comm. Math. Phys., 126 (1989), 13.  doi: 10.1007/BF02124329.  Google Scholar

[7]

M. Bialy and L. Polterovich, Hamiltonian diffeomorphisms and Lagrangian distributions,, Geom. Funct. Anal., 2 (1992), 173.  doi: 10.1007/BF01896972.  Google Scholar

[8]

M. Bialy and L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom,, Invent. Math., 97 (1989), 291.  doi: 10.1007/BF01389043.  Google Scholar

[9]

M. Bialy and L. Polterovich, Hamiltonian systems, Lagrangian tori and Birkhoff's theorem,, Math. Ann., 292 (1992), 619.  doi: 10.1007/BF01444639.  Google Scholar

[10]

J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d'après Kolmogorov, Arnol'd, Moser, Rüssmann, Zehnder, Herman, Pöschel,…),, (French) [Invariant tori of Hamiltonian dynamical systems (following Kolmogorov, 133-134 (1986), 133.   Google Scholar

[11]

M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, (French)Inst. Hautes Études Sci. Publ. Math. No., 49 (1979), 5.   Google Scholar

[12]

M. Herman, Inégalités "a priori''pour des tores lagrangiens invariants par des difféomorphismes symplectiques,, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms] Inst. Hautes Études Sci. Publ. Math. No., 70 (1989), 47.  doi: 10.1007/BF02698874.  Google Scholar

[13]

J. Milnor, Topology from the differentiable viewpoint,, Based on notes by David W. Weaver. Revised reprint of the 1965 original. Princeton Landmarks in Mathematics. Princeton University Press, (1965).   Google Scholar

[14]

M. Hirsch, C. Pugh and M. Shub, Invariant manifolds,, Lecture Notes in Mathematics, (1977).   Google Scholar

[15]

A. Weinstein, Lectures on symplectic manifolds,, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, (1977), 8.   Google Scholar

show all references

References:
[1]

M.-C. Arnaud, Fibrés de Green et régularité des graphes $C^0$-lagrangiens invariants par un flot de Tonelli,, (French) [Green fibrations and regularity of $C^0$-Lagrangian graphs invariant under a Tonelli flow], 9 (2008), 881.  doi: 10.1007/s00023-008-0375-7.  Google Scholar

[2]

M.-C. Arnaud, On a theorem due to Birkhoff,, Geometric and Functional Analysis, 20 (2010), 1307.  doi: 10.1007/s00039-010-0091-6.  Google Scholar

[3]

V. Arnol'd and A. Avez, Ergodic problems of classical mechanics,, Translated from the French by A. Avez. W. A. Benjamin, (1968).   Google Scholar

[4]

P. Bernard, The dynamics of pseudographs in convex Hamiltonian systems,, J. Amer. Math. Soc., 21 (2008), 615.  doi: 10.1090/S0894-0347-08-00591-2.  Google Scholar

[5]

P. Bernard and J. dos Santos, A geometric definition of the Ma-Mather set and a theorem of Marie-Claude Arnaud,, Math. Proc. Cambridge Philos. Soc., 152 (2012), 167.  doi: 10.1017/S0305004111000685.  Google Scholar

[6]

M. Bialy, Aubry-Mather sets and Birkhoff's theorem for geodesic flows on the two-dimensional torus,, Comm. Math. Phys., 126 (1989), 13.  doi: 10.1007/BF02124329.  Google Scholar

[7]

M. Bialy and L. Polterovich, Hamiltonian diffeomorphisms and Lagrangian distributions,, Geom. Funct. Anal., 2 (1992), 173.  doi: 10.1007/BF01896972.  Google Scholar

[8]

M. Bialy and L. Polterovich, Lagrangian singularities of invariant tori of Hamiltonian systems with two degrees of freedom,, Invent. Math., 97 (1989), 291.  doi: 10.1007/BF01389043.  Google Scholar

[9]

M. Bialy and L. Polterovich, Hamiltonian systems, Lagrangian tori and Birkhoff's theorem,, Math. Ann., 292 (1992), 619.  doi: 10.1007/BF01444639.  Google Scholar

[10]

J.-B. Bost, Tores invariants des systèmes dynamiques hamiltoniens (d'après Kolmogorov, Arnol'd, Moser, Rüssmann, Zehnder, Herman, Pöschel,…),, (French) [Invariant tori of Hamiltonian dynamical systems (following Kolmogorov, 133-134 (1986), 133.   Google Scholar

[11]

M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, (French)Inst. Hautes Études Sci. Publ. Math. No., 49 (1979), 5.   Google Scholar

[12]

M. Herman, Inégalités "a priori''pour des tores lagrangiens invariants par des difféomorphismes symplectiques,, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms] Inst. Hautes Études Sci. Publ. Math. No., 70 (1989), 47.  doi: 10.1007/BF02698874.  Google Scholar

[13]

J. Milnor, Topology from the differentiable viewpoint,, Based on notes by David W. Weaver. Revised reprint of the 1965 original. Princeton Landmarks in Mathematics. Princeton University Press, (1965).   Google Scholar

[14]

M. Hirsch, C. Pugh and M. Shub, Invariant manifolds,, Lecture Notes in Mathematics, (1977).   Google Scholar

[15]

A. Weinstein, Lectures on symplectic manifolds,, Expository lectures from the CBMS Regional Conference held at the University of North Carolina, (1977), 8.   Google Scholar

[1]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[7]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]