\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on integrable mechanical systems on surfaces

Abstract / Introduction Related Papers Cited by
  • Let $\mathfrak{S}$ be a compact, connected surface and $H \in C^2(T^* \mathfrak{S})$ a Tonelli Hamiltonian. This note extends V. V. Kozlov's result on the Euler characteristic of $\mathfrak{S}$ when $H$ is real-analytically integrable, using a definition of topologically-tame integrability called semisimplicity. Theorem: If $H$ is $2$-semisimple, then $\mathfrak{S}$ has non-negative Euler characteristic; if $H$ is $1$-semisimple, then $\mathfrak{S}$ has positive Euler characteristic.
    Mathematics Subject Classification: Primary: 37J35; secondary: 70H06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the second (1989) edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 199?.

    [2]

    M. Bialy, Integrable geodesic flows on surfaces, Geom. Funct. Anal., 20 (2010), 357-367.doi: 10.1007/s00039-010-0069-4.

    [3]

    A. V. Bolsinov and B. Jovanović, Complete involutive algebras of functions on cotangent bundles of homogeneous spaces, Math. Z., 246 (2004), 213-236.doi: 10.1007/s00209-003-0596-x.

    [4]

    L. T. Butler, Invariant fibrations of geodesic flows, Topology, 44 (2005), 769-789.doi: 10.1016/j.top.2005.01.004.

    [5]

    _______, An optical Hamiltonian and obstructions to integrability, Nonlinearity, 19 (2006), 2123-2135.doi: 10.1088/0951-7715/19/9/008.

    [6]

    _______, A generalization of Kozlov's theorem on integrable mechanical systems on surfaces, Preprint arXiv:1208.1460v1 (2012), 1-7.

    [7]

    P. Dazord and T. Delzant, Le problème général des variables actions-angles, J. Differential Geom., 26 (1987), 223-251.

    [8]

    E. Glasmachers and G. Knieper, Characterization of geodesic flows on $T^2$ with and without positive topological entropy, Geom. Funct. Anal., 20 (2010), 1259-1277.doi: 10.1007/s00039-010-0087-2.

    [9]

    _______, Minimal geodesic foliation on $T^2$ in case of vanishing topological entropy, J. Topol. Anal., 3 (2011), 511-520.doi: 10.1142/S1793525311000623.

    [10]

    V. V. Kozlov, Topological obstacles to the integrability of natural mechanical systems, Dokl. Akad. Nauk SSSR, 249 (1979), 1299-1302.

    [11]

    ______, Symmetries, Topology and Resonances in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 31, Springer-Verlag, Berlin, 1996, Translated from the Russian manuscript by S. V. Bolotin, D. Treshchev and Yuri Fedorov.

    [12]

    Y. Long, Collection of problems proposed at International Conference on Variational Methods, Front. Math. China, 3 (2008), 259-273.doi: 10.1007/s11464-008-0017-x.

    [13]

    N. N. Nehorošev, Action-angle variables, and their generalizations, Trudy Moskov. Mat. Obšč., 26 (1972), 181-198.

    [14]

    I. A. Taĭmanov, Topological obstructions to the integrability of geodesic flows on nonsimply connected manifolds, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 429-435, 448.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(130) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return