-
Previous Article
The properties of positive solutions to an integral system involving Wolff potential
- DCDS Home
- This Issue
-
Next Article
Lyapunov spectrum for geodesic flows of rank 1 surfaces
A note on integrable mechanical systems on surfaces
1. | Department of Mathematics, Central Michigan University, Mount Pleasant, MI, 48859, United States |
References:
[1] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the second (1989) edition. Graduate Texts in Mathematics, (1989).
|
[2] |
M. Bialy, Integrable geodesic flows on surfaces,, Geom. Funct. Anal., 20 (2010), 357.
doi: 10.1007/s00039-010-0069-4. |
[3] |
A. V. Bolsinov and B. Jovanović, Complete involutive algebras of functions on cotangent bundles of homogeneous spaces,, Math. Z., 246 (2004), 213.
doi: 10.1007/s00209-003-0596-x. |
[4] |
L. T. Butler, Invariant fibrations of geodesic flows,, Topology, 44 (2005), 769.
doi: 10.1016/j.top.2005.01.004. |
[5] |
_______, An optical Hamiltonian and obstructions to integrability,, Nonlinearity, 19 (2006), 2123.
doi: 10.1088/0951-7715/19/9/008. |
[6] |
_______, A generalization of Kozlov's theorem on integrable mechanical systems on surfaces,, Preprint , (2012), 1. Google Scholar |
[7] |
P. Dazord and T. Delzant, Le problème général des variables actions-angles,, J. Differential Geom., 26 (1987), 223.
|
[8] |
E. Glasmachers and G. Knieper, Characterization of geodesic flows on $T^2$ with and without positive topological entropy,, Geom. Funct. Anal., 20 (2010), 1259.
doi: 10.1007/s00039-010-0087-2. |
[9] |
_______, Minimal geodesic foliation on $T^2$ in case of vanishing topological entropy,, J. Topol. Anal., 3 (2011), 511.
doi: 10.1142/S1793525311000623. |
[10] |
V. V. Kozlov, Topological obstacles to the integrability of natural mechanical systems,, Dokl. Akad. Nauk SSSR, 249 (1979), 1299.
|
[11] |
______, Symmetries, Topology and Resonances in Hamiltonian Mechanics,, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], (1996).
|
[12] |
Y. Long, Collection of problems proposed at International Conference on Variational Methods,, Front. Math. China, 3 (2008), 259.
doi: 10.1007/s11464-008-0017-x. |
[13] |
N. N. Nehorošev, Action-angle variables, and their generalizations,, Trudy Moskov. Mat. Obšč., 26 (1972), 181.
|
[14] |
I. A. Taĭmanov, Topological obstructions to the integrability of geodesic flows on nonsimply connected manifolds,, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 429.
|
show all references
References:
[1] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein. Corrected reprint of the second (1989) edition. Graduate Texts in Mathematics, (1989).
|
[2] |
M. Bialy, Integrable geodesic flows on surfaces,, Geom. Funct. Anal., 20 (2010), 357.
doi: 10.1007/s00039-010-0069-4. |
[3] |
A. V. Bolsinov and B. Jovanović, Complete involutive algebras of functions on cotangent bundles of homogeneous spaces,, Math. Z., 246 (2004), 213.
doi: 10.1007/s00209-003-0596-x. |
[4] |
L. T. Butler, Invariant fibrations of geodesic flows,, Topology, 44 (2005), 769.
doi: 10.1016/j.top.2005.01.004. |
[5] |
_______, An optical Hamiltonian and obstructions to integrability,, Nonlinearity, 19 (2006), 2123.
doi: 10.1088/0951-7715/19/9/008. |
[6] |
_______, A generalization of Kozlov's theorem on integrable mechanical systems on surfaces,, Preprint , (2012), 1. Google Scholar |
[7] |
P. Dazord and T. Delzant, Le problème général des variables actions-angles,, J. Differential Geom., 26 (1987), 223.
|
[8] |
E. Glasmachers and G. Knieper, Characterization of geodesic flows on $T^2$ with and without positive topological entropy,, Geom. Funct. Anal., 20 (2010), 1259.
doi: 10.1007/s00039-010-0087-2. |
[9] |
_______, Minimal geodesic foliation on $T^2$ in case of vanishing topological entropy,, J. Topol. Anal., 3 (2011), 511.
doi: 10.1142/S1793525311000623. |
[10] |
V. V. Kozlov, Topological obstacles to the integrability of natural mechanical systems,, Dokl. Akad. Nauk SSSR, 249 (1979), 1299.
|
[11] |
______, Symmetries, Topology and Resonances in Hamiltonian Mechanics,, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], (1996).
|
[12] |
Y. Long, Collection of problems proposed at International Conference on Variational Methods,, Front. Math. China, 3 (2008), 259.
doi: 10.1007/s11464-008-0017-x. |
[13] |
N. N. Nehorošev, Action-angle variables, and their generalizations,, Trudy Moskov. Mat. Obšč., 26 (1972), 181.
|
[14] |
I. A. Taĭmanov, Topological obstructions to the integrability of geodesic flows on nonsimply connected manifolds,, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 429.
|
[1] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[2] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[3] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[4] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278 |
[5] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[6] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[7] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[8] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[9] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[10] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[11] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[12] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]