May  2014, 34(5): 1879-1904. doi: 10.3934/dcds.2014.34.1879

The properties of positive solutions to an integral system involving Wolff potential

1. 

School of Mathematical Sciences, Jiangsu Normal University, Xuzhou, 221116, China

Received  January 2013 Revised  June 2013 Published  October 2013

In this paper, we consider the positive solutions of the following weighted integral system involving Wolff potential in $R^{n}$: $$ \left\{ \begin{array}{ll} u(x) = R_1(x)W_{\beta,\gamma}(\frac{v^q}{|y|^{\sigma}})(x), \\ v(x) = R_2(x)W_{\beta,\gamma}(\frac{u^p}{|y|^{\sigma}})(x).                           (0.1) \end{array} \right. $$ This system is helpful to understand some nonlinear PDEs and other nonlinear problems. Different from the case of $\sigma=0$, it is difficult to handle the properties of the solutions since there is singularity at origin. First, we overcome this difficulty by modifying and refining the new method which was introduced to explore the integrability result establishes by Ma, Chen and Li, and obtain an optimal integrability. Second, we use the method of moving planes to prove the radial symmetry for the positive solutions of (0.1) when $R_{1}(x)\equiv R_{2}(x)\equiv 1$. Based on these results, by intricate analytical techniques, we obtain the estimate of the decay rates of those solutions near infinity.
Citation: Huan Chen, Zhongxue Lü. The properties of positive solutions to an integral system involving Wolff potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1879-1904. doi: 10.3934/dcds.2014.34.1879
References:
[1]

C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalityes,, Potential Anal., 16 (2002), 347. doi: 10.1023/A:1014845728367.

[2]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Commun. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445.

[3]

W. Chen and C. Li, Regularity of solutions for a system of intgral equations,, Commun. Pure Appl. Anal., 4 (2005), 1.

[4]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5.

[5]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167.

[6]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083.

[7]

G. Hardy and J. Littelwood, Some properties of fractional integral (1),, Math. Z., 27 (1928), 565. doi: 10.1007/BF01171116.

[8]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33 (1983), 161. doi: 10.5802/aif.944.

[9]

C. Jin and C. Li, Symmetry of solutions to some syetems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X.

[10]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. PDEs, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5.

[11]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear ellipitc equations,, Acta Math., 172 (1994), 137. doi: 10.1007/BF02392793.

[12]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (1992), 591.

[13]

D. Labutin, Potential eatimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1. doi: 10.1215/S0012-7094-02-11111-9.

[14]

LY. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739. doi: 10.1016/j.jde.2011.10.009.

[15]

Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Analysis, 35 (2011), 387. doi: 10.1007/s11118-010-9218-5.

[16]

Y. Lei, C. Li and C. Ma, Decay estimation for positve solutions of a $\gamma$-Laplace equation,, Disc. Cont. Dyn. Sys., 30 (2011), 547. doi: 10.3934/dcds.2011.30.547.

[17]

C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents,, SIAM J. of Appl. Anal., 40 (2008), 1049. doi: 10.1137/080712301.

[18]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020.

[19]

N. Pfuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859. doi: 10.4007/annals.2008.168.859.

[20]

S. Sobolev, On a theorem of functional analysis,, Mat. Sb. (N.S.), 4 (1938), 471.

[21]

S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials,, Journal of Functional Analysis, 263 (2012), 3857. doi: 10.1016/j.jfa.2012.09.012.

[22]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.

show all references

References:
[1]

C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalityes,, Potential Anal., 16 (2002), 347. doi: 10.1023/A:1014845728367.

[2]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Commun. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445.

[3]

W. Chen and C. Li, Regularity of solutions for a system of intgral equations,, Commun. Pure Appl. Anal., 4 (2005), 1.

[4]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soc., 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5.

[5]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167.

[6]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Disc. Cont. Dyn. Sys., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083.

[7]

G. Hardy and J. Littelwood, Some properties of fractional integral (1),, Math. Z., 27 (1928), 565. doi: 10.1007/BF01171116.

[8]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33 (1983), 161. doi: 10.5802/aif.944.

[9]

C. Jin and C. Li, Symmetry of solutions to some syetems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661. doi: 10.1090/S0002-9939-05-08411-X.

[10]

C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. PDEs, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5.

[11]

T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear ellipitc equations,, Acta Math., 172 (1994), 137. doi: 10.1007/BF02392793.

[12]

T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (1992), 591.

[13]

D. Labutin, Potential eatimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1. doi: 10.1215/S0012-7094-02-11111-9.

[14]

LY. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system,, J. Differential Equations, 252 (2012), 2739. doi: 10.1016/j.jde.2011.10.009.

[15]

Y. Lei, Decay rates for solutions of an integral system of Wolff type,, Potential Analysis, 35 (2011), 387. doi: 10.1007/s11118-010-9218-5.

[16]

Y. Lei, C. Li and C. Ma, Decay estimation for positve solutions of a $\gamma$-Laplace equation,, Disc. Cont. Dyn. Sys., 30 (2011), 547. doi: 10.3934/dcds.2011.30.547.

[17]

C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents,, SIAM J. of Appl. Anal., 40 (2008), 1049. doi: 10.1137/080712301.

[18]

C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type,, Advances in Mathematics, 226 (2011), 2676. doi: 10.1016/j.aim.2010.07.020.

[19]

N. Pfuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. of Math., 168 (2008), 859. doi: 10.4007/annals.2008.168.859.

[20]

S. Sobolev, On a theorem of functional analysis,, Mat. Sb. (N.S.), 4 (1938), 471.

[21]

S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials,, Journal of Functional Analysis, 263 (2012), 3857. doi: 10.1016/j.jfa.2012.09.012.

[22]

E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space,, J. Math. Mech., 7 (1958), 503.

[1]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[2]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[3]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[4]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[5]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[6]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[7]

Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems & Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031

[8]

Miaomiao Cai, Li Ma. Moving planes for nonlinear fractional Laplacian equation with negative powers. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4603-4615. doi: 10.3934/dcds.2018201

[9]

Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067

[10]

Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure & Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385

[11]

Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102

[12]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[13]

Tamara Fastovska. Decay rates for Kirchhoff-Timoshenko transmission problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2645-2667. doi: 10.3934/cpaa.2013.12.2645

[14]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[15]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[16]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[17]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[18]

Dongbing Zha. Remarks on nonlinear elastic waves in the radial symmetry in 2-D. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4051-4062. doi: 10.3934/dcds.2016.36.4051

[19]

Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021

[20]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]