Citation: |
[1] |
C. Cascante, J. Ortega and I. Verbitsky, Wolff's inequality for radially nonincreasing kernels and applications to trace inequalityes, Potential Anal., 16 (2002), 347-372.doi: 10.1023/A:1014845728367. |
[2] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Commun. Partial Differential Equations, 30 (2005), 59-65.doi: 10.1081/PDE-200044445. |
[3] |
W. Chen and C. Li, Regularity of solutions for a system of intgral equations, Commun. Pure Appl. Anal., 4 (2005), 1-8. |
[4] |
W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality, Proc. Amer. Math. Soc., 136 (2008), 955-962.doi: 10.1090/S0002-9939-07-09232-5. |
[5] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184.doi: 10.3934/dcds.2009.24.1167. |
[6] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Disc. Cont. Dyn. Sys., 30 (2011), 1083-1093.doi: 10.3934/dcds.2011.30.1083. |
[7] |
G. Hardy and J. Littelwood, Some properties of fractional integral (1), Math. Z., 27 (1928), 565-606.doi: 10.1007/BF01171116. |
[8] |
L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble), 33 (1983), 161-187.doi: 10.5802/aif.944. |
[9] |
C. Jin and C. Li, Symmetry of solutions to some syetems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670.doi: 10.1090/S0002-9939-05-08411-X. |
[10] |
C. Jin and C. Li, Qualitative analysis of some systems of integral equations, Calc. Var. PDEs, 26 (2006), 447-457.doi: 10.1007/s00526-006-0013-5. |
[11] |
T. Kilpelaiinen and J. Maly, The Wiener test and potential estimates for quasilinear ellipitc equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793. |
[12] |
T. Kilpelaiinen and J. Maly, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19 (1992), 591-613. |
[13] |
D. Labutin, Potential eatimates for a class of fully nonlinear elliptic equations, Duke Math. J., 111 (2002), 1-49.doi: 10.1215/S0012-7094-02-11111-9. |
[14] |
LY. Lei and C. Li, Integrability and asymptotics of positive solutions of a $\gamma$-Laplace system, J. Differential Equations, 252 (2012), 2739-2758.doi: 10.1016/j.jde.2011.10.009. |
[15] |
Y. Lei, Decay rates for solutions of an integral system of Wolff type, Potential Analysis, 35 (2011), 387-402.doi: 10.1007/s11118-010-9218-5. |
[16] |
Y. Lei, C. Li and C. Ma, Decay estimation for positve solutions of a $\gamma$-Laplace equation, Disc. Cont. Dyn. Sys., 30 (2011), 547-558.doi: 10.3934/dcds.2011.30.547. |
[17] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents, SIAM J. of Appl. Anal., 40 (2008), 1049-1057.doi: 10.1137/080712301. |
[18] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Advances in Mathematics, 226 (2011), 2676-2699.doi: 10.1016/j.aim.2010.07.020. |
[19] |
N. Pfuc and I. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math., 168 (2008), 859-914.doi: 10.4007/annals.2008.168.859. |
[20] |
S. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.), 4 (1938), 471-479, Amer. Math. Soc. Transl. Ser., 234 (1963), 39-68. |
[21] |
S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials, Journal of Functional Analysis, 263 (2012), 3857-3882.doi: 10.1016/j.jfa.2012.09.012. |
[22] |
E. M. Stein and G. Weiss, Fractional integrals in $n$-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514. |