January  2014, 34(1): 19-49. doi: 10.3934/dcds.2014.34.19

On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes

1. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, Ilha do Fundão, Rio de Janeiro, RJ, 21941-909, Brazil

2. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, Ilha do Fundão, Rio de Janeiro, RJ 21941-909

Received  October 2012 Revised  April 2013 Published  June 2013

In this paper statistical solutions of the 3D Navier-Stokes-$\alpha$ model with periodic boundary condition are considered. It is proved that under certain natural conditions statistical solutions of the 3D Navier-Stokes-$\alpha$ model converge to statistical solutions of the exact 3D Navier-Stokes equations as $\alpha$ goes to zero. The statistical solutions considered here arise as families of time-projections of measures on suitable trajectory spaces.
Citation: Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19
References:
[1]

C. D. Aliprantis and K. C. Border, "Infinite Dimensional Analysis. A Hitchhiker's Guide,'' Third edition, Springer, Berlin, 2006.  Google Scholar

[2]

G. K. Batchelor, "The Theory of Homogeneous Turbulence,'' Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1953.  Google Scholar

[3]

H. Bercovici, P. Constantin, C. Foias and O. P. Manley, Exponential decay of the power spectrum of turbulence, J. Stat. Phys., 80 (1995), 579-602. doi: 10.1007/BF02178549.  Google Scholar

[4]

A. Bronzi, C. Mondaini and R. Rosa, On the convergence of statistical solutions,, work in progress., ().   Google Scholar

[5]

M. Capinski and N. Cutland, A simple proof of existence of weak and statistical solutions of Navier-Stokes equations, Proc. Roy. Soc. London Ser. A, 436 (1992), 1-11. doi: 10.1098/rspa.1992.0001.  Google Scholar

[6]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341. doi: 10.1103/PhysRevLett.81.5338.  Google Scholar

[7]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999), 2343-2353. doi: 10.1063/1.870096.  Google Scholar

[8]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, Phys. D, 133 (1999), 49-65. doi: 10.1016/S0167-2789(99)00098-6.  Google Scholar

[9]

P. Constantin and C. Foias, "Navier-Stokes Equations,'' Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.  Google Scholar

[10]

P. Constantin, C. Foias and O. P. Manley, Effects of the forcing function on the energy spectrum in 2-D turbulence, Phys. Fluids, 6 (1994), 427-429. doi: 10.1063/1.868042.  Google Scholar

[11]

P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbbR^2$, Comm. Math. Phys., 275 (2007), 529-551. doi: 10.1007/s00220-007-0310-7.  Google Scholar

[12]

P. Constantin and J. Wu, Statistical solutions of the Navier-Stokes equations on the phase space of vorticity and the inviscid limits, J. Math. Phys., 38 (1997), 3031-3045. doi: 10.1063/1.532032.  Google Scholar

[13]

F. Flandoli, An introduction to 3D stochastic fluid dynamics, in "SPDE in hydrodynamic: Recent progress and prospects,'' Lecture Notes in Math., 1942, Springer, Berlin, (2008), 51-150 doi: 10.1007/978-3-540-78493-7_2.  Google Scholar

[14]

C. Foias, Statistical study of Navier-Stokes equations. I, Rend. Sem. Mat. Univ. Padova, 48 (1972), 219-348.  Google Scholar

[15]

C. Foias, Statistical study of Navier-Stokes equations. II, Rend. Sem. Mat. Univ. Padova, 49 (1973), 9-123.  Google Scholar

[16]

C. Foias, A functional approach to turbulence, Russian Math. Survey, 29 (1974), 293-326. Google Scholar

[17]

C. Foias, What do the Navier-Stokes equations tell us about turbulence?, in "Harmonic Analysis and Nonlinear Differential Equations'' (Riverside, CA, 1995), Contemp. Math., 208, Amer. Math. Soc., Providence, RI, (1997), 151-180. doi: 10.1090/conm/208/02739.  Google Scholar

[18]

C. Foias, D. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence. Advances in nonlinear mathematics and science, Phys. D, 152/153 (2001), 505-519. doi: 10.1016/S0167-2789(01)00191-9.  Google Scholar

[19]

C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35. doi: 10.1023/A:1012984210582.  Google Scholar

[20]

C. Foias, O. P. Manley, R. M. S. Rosa and R. Temam, Estimates for the energy cascade in three-dimensional turbulent flows, Comptes Rendus Acad. Sci. Paris, Série I, 333 (2001), 499-504. doi: 10.1016/S0764-4442(01)02008-0.  Google Scholar

[21]

C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence,'' Encyclopedia of Mathematics and its Applications, Vol. 83, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.  Google Scholar

[22]

C. Foias and G. Prodi, Sur les solutions statistiques des équations de Navier-Stokes, Ann. Mat. Pura Appl. (4), 111 (1976), 307-330. doi: 10.1007/BF02411822.  Google Scholar

[23]

C. Foias, R. M. S. Rosa and R. Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: The time-dependent case, Comptes Rendus Acad. Sci. Paris, 348 (2010), 235-240. doi: 10.1016/j.crma.2009.12.017.  Google Scholar

[24]

C. Foias, R. M. S. Rosa and R. Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: The stationary case, Comptes Rendus Acad. Sci. Paris, 348 (2010), 347-353. doi: 10.1016/j.crma.2009.12.018.  Google Scholar

[25]

C. Foias, R. Rosa and R. Temam, Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations,, to appear in Annales de l'Institut Fourier, ().   Google Scholar

[26]

C. Foias, R. Rosa and R. Temam, Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations,, in preparation., ().   Google Scholar

[27]

A. V. Fursikov, The closure problem for the Friedman-Keller infinite chain of moment equations, corresponding to the Navier-Stokes system, in "Fundamental Problematic Issues in Turbulence" (Monte Verita, 1998), Trends Math., Birkhäuser, Basel, (1999), 17-24.  Google Scholar

[28]

J. O. Hinze, "Turbulence: An Introduction to its Mechanism and Theory,'' Second edition, McGraw-Hill Book Co., Inc., New York, New York, 1975.  Google Scholar

[29]

M. Holst, E. Lunasin and G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci., 20 (2010), 523-567. doi: 10.1007/s00332-010-9066-x.  Google Scholar

[30]

E. Hopf, Statistical hydromechanics and functional calculus, J. Rational Mech. Anal., 1 (1952), 87-123.  Google Scholar

[31]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'' Revised English edition, Translated from the Russian by Richard A. Silverman, Gordon and Breach Science Publishers, New York-London, 1963.  Google Scholar

[32]

A. S. Monin and A. M. Yaglom, "Statistical Fluid Mechanics: Mechanics of Turbulence,'' Volume 2, MIT Press, Cambridge, MA, 1975. Google Scholar

[33]

Yu. V. Prohorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen., 1 (1956), 177-238.  Google Scholar

[34]

F. Ramos, R. Rosa and R. Temam, Statistical estimates for channel flows driven by a pressure gradient, Phys. D, 237 (2008), 1368-1387. doi: 10.1016/j.physd.2008.03.013.  Google Scholar

[35]

F. Ramos and E. S. Titi, Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403. doi: 10.3934/dcds.2010.28.375.  Google Scholar

[36]

R. M. S. Rosa, Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence, Appl. Math., 47 (2002), 485-516. doi: 10.1023/A:1023297721804.  Google Scholar

[37]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'' Third edition, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, (1984); Reedition in the AMS Chelsea series, AMS, Providence, 2001. Google Scholar

[38]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,'' Second edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. doi: 10.1137/1.9781611970050.  Google Scholar

[39]

H. Tennekes and J. L. Lumley, "A First Course in Turbulence,'' MIT Press, Cambridge, Mass., 1972. Google Scholar

[40]

F. Topsøe, Compactness in spaces of measures, Studia Math., 36 (1970), 195-222.  Google Scholar

[41]

F. Topsøe, "Topology and Measure,'' Lecture Notes in Mathematics, Vol. 133, Springer-Verlag, Berlin-New York, 1970.  Google Scholar

[42]

F. Topsøe, Compactness and tightness in a space of measures with the topology of weak convergence, Math. Scand., 34 (1974), 187-210.  Google Scholar

[43]

M. I. Višik and A. V. Foursikov, L'équation de Hopf, les solutions statistiques, les moments correspondant aux systèmes des équations paraboliques quasilinéaires, J. Math. Pures Appl. (9), 56 (1977), 85-122.  Google Scholar

[44]

M. I. Višik and A. V. Fursikov, Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations, (Russian) Sibirsk. Mat. Zh., 19 (1978), 1005-1031, 1213.  Google Scholar

[45]

M. I. Višik and A. Fursikov, "Mathematical Problems of Statistical Hydrodynamics,'' Kluwer, Dordrecht, 1988. Google Scholar

[46]

M. I. Višik, E. S. Titi and V. V. Chepyzhov, On the convergence of trajectory attractors of the three-dimensional Navier-Stokes $\alpha$-model as $\alpha \rightarrow 0$, Sb. Math., 198 (2007), 1703-1736. doi: 10.1070/SM2007v198n12ABEH003902.  Google Scholar

show all references

References:
[1]

C. D. Aliprantis and K. C. Border, "Infinite Dimensional Analysis. A Hitchhiker's Guide,'' Third edition, Springer, Berlin, 2006.  Google Scholar

[2]

G. K. Batchelor, "The Theory of Homogeneous Turbulence,'' Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1953.  Google Scholar

[3]

H. Bercovici, P. Constantin, C. Foias and O. P. Manley, Exponential decay of the power spectrum of turbulence, J. Stat. Phys., 80 (1995), 579-602. doi: 10.1007/BF02178549.  Google Scholar

[4]

A. Bronzi, C. Mondaini and R. Rosa, On the convergence of statistical solutions,, work in progress., ().   Google Scholar

[5]

M. Capinski and N. Cutland, A simple proof of existence of weak and statistical solutions of Navier-Stokes equations, Proc. Roy. Soc. London Ser. A, 436 (1992), 1-11. doi: 10.1098/rspa.1992.0001.  Google Scholar

[6]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341. doi: 10.1103/PhysRevLett.81.5338.  Google Scholar

[7]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999), 2343-2353. doi: 10.1063/1.870096.  Google Scholar

[8]

S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, Phys. D, 133 (1999), 49-65. doi: 10.1016/S0167-2789(99)00098-6.  Google Scholar

[9]

P. Constantin and C. Foias, "Navier-Stokes Equations,'' Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.  Google Scholar

[10]

P. Constantin, C. Foias and O. P. Manley, Effects of the forcing function on the energy spectrum in 2-D turbulence, Phys. Fluids, 6 (1994), 427-429. doi: 10.1063/1.868042.  Google Scholar

[11]

P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbbR^2$, Comm. Math. Phys., 275 (2007), 529-551. doi: 10.1007/s00220-007-0310-7.  Google Scholar

[12]

P. Constantin and J. Wu, Statistical solutions of the Navier-Stokes equations on the phase space of vorticity and the inviscid limits, J. Math. Phys., 38 (1997), 3031-3045. doi: 10.1063/1.532032.  Google Scholar

[13]

F. Flandoli, An introduction to 3D stochastic fluid dynamics, in "SPDE in hydrodynamic: Recent progress and prospects,'' Lecture Notes in Math., 1942, Springer, Berlin, (2008), 51-150 doi: 10.1007/978-3-540-78493-7_2.  Google Scholar

[14]

C. Foias, Statistical study of Navier-Stokes equations. I, Rend. Sem. Mat. Univ. Padova, 48 (1972), 219-348.  Google Scholar

[15]

C. Foias, Statistical study of Navier-Stokes equations. II, Rend. Sem. Mat. Univ. Padova, 49 (1973), 9-123.  Google Scholar

[16]

C. Foias, A functional approach to turbulence, Russian Math. Survey, 29 (1974), 293-326. Google Scholar

[17]

C. Foias, What do the Navier-Stokes equations tell us about turbulence?, in "Harmonic Analysis and Nonlinear Differential Equations'' (Riverside, CA, 1995), Contemp. Math., 208, Amer. Math. Soc., Providence, RI, (1997), 151-180. doi: 10.1090/conm/208/02739.  Google Scholar

[18]

C. Foias, D. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence. Advances in nonlinear mathematics and science, Phys. D, 152/153 (2001), 505-519. doi: 10.1016/S0167-2789(01)00191-9.  Google Scholar

[19]

C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35. doi: 10.1023/A:1012984210582.  Google Scholar

[20]

C. Foias, O. P. Manley, R. M. S. Rosa and R. Temam, Estimates for the energy cascade in three-dimensional turbulent flows, Comptes Rendus Acad. Sci. Paris, Série I, 333 (2001), 499-504. doi: 10.1016/S0764-4442(01)02008-0.  Google Scholar

[21]

C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence,'' Encyclopedia of Mathematics and its Applications, Vol. 83, Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511546754.  Google Scholar

[22]

C. Foias and G. Prodi, Sur les solutions statistiques des équations de Navier-Stokes, Ann. Mat. Pura Appl. (4), 111 (1976), 307-330. doi: 10.1007/BF02411822.  Google Scholar

[23]

C. Foias, R. M. S. Rosa and R. Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: The time-dependent case, Comptes Rendus Acad. Sci. Paris, 348 (2010), 235-240. doi: 10.1016/j.crma.2009.12.017.  Google Scholar

[24]

C. Foias, R. M. S. Rosa and R. Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: The stationary case, Comptes Rendus Acad. Sci. Paris, 348 (2010), 347-353. doi: 10.1016/j.crma.2009.12.018.  Google Scholar

[25]

C. Foias, R. Rosa and R. Temam, Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations,, to appear in Annales de l'Institut Fourier, ().   Google Scholar

[26]

C. Foias, R. Rosa and R. Temam, Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations,, in preparation., ().   Google Scholar

[27]

A. V. Fursikov, The closure problem for the Friedman-Keller infinite chain of moment equations, corresponding to the Navier-Stokes system, in "Fundamental Problematic Issues in Turbulence" (Monte Verita, 1998), Trends Math., Birkhäuser, Basel, (1999), 17-24.  Google Scholar

[28]

J. O. Hinze, "Turbulence: An Introduction to its Mechanism and Theory,'' Second edition, McGraw-Hill Book Co., Inc., New York, New York, 1975.  Google Scholar

[29]

M. Holst, E. Lunasin and G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci., 20 (2010), 523-567. doi: 10.1007/s00332-010-9066-x.  Google Scholar

[30]

E. Hopf, Statistical hydromechanics and functional calculus, J. Rational Mech. Anal., 1 (1952), 87-123.  Google Scholar

[31]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'' Revised English edition, Translated from the Russian by Richard A. Silverman, Gordon and Breach Science Publishers, New York-London, 1963.  Google Scholar

[32]

A. S. Monin and A. M. Yaglom, "Statistical Fluid Mechanics: Mechanics of Turbulence,'' Volume 2, MIT Press, Cambridge, MA, 1975. Google Scholar

[33]

Yu. V. Prohorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen., 1 (1956), 177-238.  Google Scholar

[34]

F. Ramos, R. Rosa and R. Temam, Statistical estimates for channel flows driven by a pressure gradient, Phys. D, 237 (2008), 1368-1387. doi: 10.1016/j.physd.2008.03.013.  Google Scholar

[35]

F. Ramos and E. S. Titi, Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403. doi: 10.3934/dcds.2010.28.375.  Google Scholar

[36]

R. M. S. Rosa, Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence, Appl. Math., 47 (2002), 485-516. doi: 10.1023/A:1023297721804.  Google Scholar

[37]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'' Third edition, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, (1984); Reedition in the AMS Chelsea series, AMS, Providence, 2001. Google Scholar

[38]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,'' Second edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. doi: 10.1137/1.9781611970050.  Google Scholar

[39]

H. Tennekes and J. L. Lumley, "A First Course in Turbulence,'' MIT Press, Cambridge, Mass., 1972. Google Scholar

[40]

F. Topsøe, Compactness in spaces of measures, Studia Math., 36 (1970), 195-222.  Google Scholar

[41]

F. Topsøe, "Topology and Measure,'' Lecture Notes in Mathematics, Vol. 133, Springer-Verlag, Berlin-New York, 1970.  Google Scholar

[42]

F. Topsøe, Compactness and tightness in a space of measures with the topology of weak convergence, Math. Scand., 34 (1974), 187-210.  Google Scholar

[43]

M. I. Višik and A. V. Foursikov, L'équation de Hopf, les solutions statistiques, les moments correspondant aux systèmes des équations paraboliques quasilinéaires, J. Math. Pures Appl. (9), 56 (1977), 85-122.  Google Scholar

[44]

M. I. Višik and A. V. Fursikov, Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations, (Russian) Sibirsk. Mat. Zh., 19 (1978), 1005-1031, 1213.  Google Scholar

[45]

M. I. Višik and A. Fursikov, "Mathematical Problems of Statistical Hydrodynamics,'' Kluwer, Dordrecht, 1988. Google Scholar

[46]

M. I. Višik, E. S. Titi and V. V. Chepyzhov, On the convergence of trajectory attractors of the three-dimensional Navier-Stokes $\alpha$-model as $\alpha \rightarrow 0$, Sb. Math., 198 (2007), 1703-1736. doi: 10.1070/SM2007v198n12ABEH003902.  Google Scholar

[1]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[2]

T. Tachim Medjo. Averaging of a 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external forces. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1281-1305. doi: 10.3934/cpaa.2011.10.1281

[3]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[4]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[5]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[6]

Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643

[7]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[8]

Aseel Farhat, M. S Jolly, Evelyn Lunasin. Bounds on energy and enstrophy for the 3D Navier-Stokes-$\alpha$ and Leray-$\alpha$ models. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2127-2140. doi: 10.3934/cpaa.2014.13.2127

[9]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[10]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[11]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[12]

Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2301-2340. doi: 10.3934/dcds.2020366

[13]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[14]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[15]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

[16]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[17]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[18]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[19]

Rafaela Guberović. Smoothness of Koch-Tataru solutions to the Navier-Stokes equations revisited. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 231-236. doi: 10.3934/dcds.2010.27.231

[20]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]