\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes

Abstract / Introduction Related Papers Cited by
  • In this paper statistical solutions of the 3D Navier-Stokes-$\alpha$ model with periodic boundary condition are considered. It is proved that under certain natural conditions statistical solutions of the 3D Navier-Stokes-$\alpha$ model converge to statistical solutions of the exact 3D Navier-Stokes equations as $\alpha$ goes to zero. The statistical solutions considered here arise as families of time-projections of measures on suitable trajectory spaces.
    Mathematics Subject Classification: Primary: 76D06, 35Q30, 76D05; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. D. Aliprantis and K. C. Border, "Infinite Dimensional Analysis. A Hitchhiker's Guide,'' Third edition, Springer, Berlin, 2006.

    [2]

    G. K. Batchelor, "The Theory of Homogeneous Turbulence,'' Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1953.

    [3]

    H. Bercovici, P. Constantin, C. Foias and O. P. Manley, Exponential decay of the power spectrum of turbulence, J. Stat. Phys., 80 (1995), 579-602.doi: 10.1007/BF02178549.

    [4]

    A. Bronzi, C. Mondaini and R. RosaOn the convergence of statistical solutions, work in progress.

    [5]

    M. Capinski and N. Cutland, A simple proof of existence of weak and statistical solutions of Navier-Stokes equations, Proc. Roy. Soc. London Ser. A, 436 (1992), 1-11.doi: 10.1098/rspa.1992.0001.

    [6]

    S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341.doi: 10.1103/PhysRevLett.81.5338.

    [7]

    S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, A connection between the Camassa-Holm equations and turbulent flows in channels and pipes, Phys. Fluids, 11 (1999), 2343-2353.doi: 10.1063/1.870096.

    [8]

    S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne, The Camassa-Holm equations and turbulence, Phys. D, 133 (1999), 49-65.doi: 10.1016/S0167-2789(99)00098-6.

    [9]

    P. Constantin and C. Foias, "Navier-Stokes Equations,'' Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.

    [10]

    P. Constantin, C. Foias and O. P. Manley, Effects of the forcing function on the energy spectrum in 2-D turbulence, Phys. Fluids, 6 (1994), 427-429.doi: 10.1063/1.868042.

    [11]

    P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible Navier-Stokes equations in $\mathbbR^2$, Comm. Math. Phys., 275 (2007), 529-551.doi: 10.1007/s00220-007-0310-7.

    [12]

    P. Constantin and J. Wu, Statistical solutions of the Navier-Stokes equations on the phase space of vorticity and the inviscid limits, J. Math. Phys., 38 (1997), 3031-3045.doi: 10.1063/1.532032.

    [13]

    F. Flandoli, An introduction to 3D stochastic fluid dynamics, in "SPDE in hydrodynamic: Recent progress and prospects,'' Lecture Notes in Math., 1942, Springer, Berlin, (2008), 51-150doi: 10.1007/978-3-540-78493-7_2.

    [14]

    C. Foias, Statistical study of Navier-Stokes equations. I, Rend. Sem. Mat. Univ. Padova, 48 (1972), 219-348.

    [15]

    C. Foias, Statistical study of Navier-Stokes equations. II, Rend. Sem. Mat. Univ. Padova, 49 (1973), 9-123.

    [16]

    C. Foias, A functional approach to turbulence, Russian Math. Survey, 29 (1974), 293-326.

    [17]

    C. Foias, What do the Navier-Stokes equations tell us about turbulence?, in "Harmonic Analysis and Nonlinear Differential Equations'' (Riverside, CA, 1995), Contemp. Math., 208, Amer. Math. Soc., Providence, RI, (1997), 151-180.doi: 10.1090/conm/208/02739.

    [18]

    C. Foias, D. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence. Advances in nonlinear mathematics and science, Phys. D, 152/153 (2001), 505-519.doi: 10.1016/S0167-2789(01)00191-9.

    [19]

    C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations, 14 (2002), 1-35.doi: 10.1023/A:1012984210582.

    [20]

    C. Foias, O. P. Manley, R. M. S. Rosa and R. Temam, Estimates for the energy cascade in three-dimensional turbulent flows, Comptes Rendus Acad. Sci. Paris, Série I, 333 (2001), 499-504.doi: 10.1016/S0764-4442(01)02008-0.

    [21]

    C. Foias, O. Manley, R. Rosa and R. Temam, "Navier-Stokes Equations and Turbulence,'' Encyclopedia of Mathematics and its Applications, Vol. 83, Cambridge University Press, Cambridge, 2001.doi: 10.1017/CBO9780511546754.

    [22]

    C. Foias and G. Prodi, Sur les solutions statistiques des équations de Navier-Stokes, Ann. Mat. Pura Appl. (4), 111 (1976), 307-330.doi: 10.1007/BF02411822.

    [23]

    C. Foias, R. M. S. Rosa and R. Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: The time-dependent case, Comptes Rendus Acad. Sci. Paris, 348 (2010), 235-240.doi: 10.1016/j.crma.2009.12.017.

    [24]

    C. Foias, R. M. S. Rosa and R. Temam, A note on statistical solutions of the three-dimensional Navier-Stokes equations: The stationary case, Comptes Rendus Acad. Sci. Paris, 348 (2010), 347-353.doi: 10.1016/j.crma.2009.12.018.

    [25]

    C. Foias, R. Rosa and R. TemamProperties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations, to appear in Annales de l'Institut Fourier, arXiv:1111.6257v1.

    [26]

    C. Foias, R. Rosa and R. TemamProperties of stationary statistical solutions of the three-dimensional Navier-Stokes equations, in preparation.

    [27]

    A. V. Fursikov, The closure problem for the Friedman-Keller infinite chain of moment equations, corresponding to the Navier-Stokes system, in "Fundamental Problematic Issues in Turbulence" (Monte Verita, 1998), Trends Math., Birkhäuser, Basel, (1999), 17-24.

    [28]

    J. O. Hinze, "Turbulence: An Introduction to its Mechanism and Theory,'' Second edition, McGraw-Hill Book Co., Inc., New York, New York, 1975.

    [29]

    M. Holst, E. Lunasin and G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci., 20 (2010), 523-567.doi: 10.1007/s00332-010-9066-x.

    [30]

    E. Hopf, Statistical hydromechanics and functional calculus, J. Rational Mech. Anal., 1 (1952), 87-123.

    [31]

    O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'' Revised English edition, Translated from the Russian by Richard A. Silverman, Gordon and Breach Science Publishers, New York-London, 1963.

    [32]

    A. S. Monin and A. M. Yaglom, "Statistical Fluid Mechanics: Mechanics of Turbulence,'' Volume 2, MIT Press, Cambridge, MA, 1975.

    [33]

    Yu. V. Prohorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen., 1 (1956), 177-238.

    [34]

    F. Ramos, R. Rosa and R. Temam, Statistical estimates for channel flows driven by a pressure gradient, Phys. D, 237 (2008), 1368-1387.doi: 10.1016/j.physd.2008.03.013.

    [35]

    F. Ramos and E. S. Titi, Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28 (2010), 375-403.doi: 10.3934/dcds.2010.28.375.

    [36]

    R. M. S. Rosa, Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence, Appl. Math., 47 (2002), 485-516.doi: 10.1023/A:1023297721804.

    [37]

    R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'' Third edition, Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, (1984); Reedition in the AMS Chelsea series, AMS, Providence, 2001.

    [38]

    R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,'' Second edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.doi: 10.1137/1.9781611970050.

    [39]

    H. Tennekes and J. L. Lumley, "A First Course in Turbulence,'' MIT Press, Cambridge, Mass., 1972.

    [40]

    F. Topsøe, Compactness in spaces of measures, Studia Math., 36 (1970), 195-222.

    [41]

    F. Topsøe, "Topology and Measure,'' Lecture Notes in Mathematics, Vol. 133, Springer-Verlag, Berlin-New York, 1970.

    [42]

    F. Topsøe, Compactness and tightness in a space of measures with the topology of weak convergence, Math. Scand., 34 (1974), 187-210.

    [43]

    M. I. Višik and A. V. Foursikov, L'équation de Hopf, les solutions statistiques, les moments correspondant aux systèmes des équations paraboliques quasilinéaires, J. Math. Pures Appl. (9), 56 (1977), 85-122.

    [44]

    M. I. Višik and A. V. Fursikov, Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations, (Russian) Sibirsk. Mat. Zh., 19 (1978), 1005-1031, 1213.

    [45]

    M. I. Višik and A. Fursikov, "Mathematical Problems of Statistical Hydrodynamics,'' Kluwer, Dordrecht, 1988.

    [46]

    M. I. Višik, E. S. Titi and V. V. Chepyzhov, On the convergence of trajectory attractors of the three-dimensional Navier-Stokes $\alpha$-model as $\alpha \rightarrow 0$, Sb. Math., 198 (2007), 1703-1736.doi: 10.1070/SM2007v198n12ABEH003902.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return