\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds

Abstract / Introduction Related Papers Cited by
  • We consider the dissipative heat flow and conservative Gross-Pitaevskii dynamics associated with the Ginzburg-Landau energy \begin{equation*} E_\varepsilon(u) = \int_{\mathcal M} \frac{|\nabla_g u|^2}{2} + \frac{(1-|u|^2)^2}{4\varepsilon^2} dv_g \end{equation*} posed on a Riemannian $2$-manifold $\mathcal{M}$ endowed with a metric $g$. In the $ε \to 0$ limit, we show the vortices of the solutions to these two problems evolve according to the gradient flow and Hamiltonian point-vortex flow respectively, associated with the renormalized energy on $\mathcal{M}.$ For the heat flow, we then specialize to the case where $\mathcal{M}=S^2$ and study the limiting system of ODE's and establish an annihilation result. Finally, for the Ginzburg-Landau heat flow on $S^2$, we derive some weighted energy identities.
    Mathematics Subject Classification: Primary: 35R01, 35K15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Baraket, Critical points of the Ginzburg-Landau system on a Riemannian surface, Asymptotic Analysisl, 13 (1996), 277-317.

    [2]

    P. Bauman, C. Chen, D. Phillips and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems, Euro. J. Applied Math., 6 (1995), 115-126.doi: 10.1017/S0956792500001728.

    [3]

    F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, Boston, 2004.

    [4]

    F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics, Duke Math. J., 130 (2005), 523-614.doi: 10.1215/S0012-7094-05-13034-4.

    [5]

    F. Bethuel, G. Orlandi and D. Smets, Quantization and motion law for Ginzburg-Landau vortices, Arch. Ration. Mech. Anal., 183 (2007), 315-370.doi: 10.1007/s00205-006-0018-4.

    [6]

    F. Bethuel, G. Orlandi and D. Smets, Dynamics of multiple degree Ginzburg-Landau vortices, Comm. Math. Phys., 272 (2007), 229-261.doi: 10.1007/s00220-007-0206-6.

    [7]

    N. Burq, P. Gérard and N. Tzvetkov, Stricharz, Inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., 126 (2004), 569-605.doi: 10.1353/ajm.2004.0016.

    [8]

    K. Chen, Instability of Ginzburg-Landau Vortices on Manifolds, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 337-350.doi: 10.1017/S0308210511000795.

    [9]

    A. Contreras, On the first critical field in Ginzburg-Landau theory for thin shells and manifolds, Arch. Rat. Mech. Anal., 200, (2011), 563-611.doi: 10.1007/s00205-010-0352-4.

    [10]

    A. Contreras and P. Sternberg, Gamma-convergence and the emergence of vortices for Ginzburg-Landau on thin shells and manifolds, Calc. Var. Partial Differential Equations, 38 (2010), 243-274.doi: 10.1007/s00526-009-0285-7.

    [11]

    J. E. Colliander and R. L. Jerrard, Ginzburg-Landau vortices: Weak stability and Schrödinger equation dynamics, Inter. Math. Res. Notices, 7 (1998), 333-358.doi: 10.1155/S1073792898000221.

    [12]

    J. E. Colliander and R. L. Jerrard, Ginzburg-Landau vortices: Weak stability and Schrödinger equation dynamics, Journal d'Analyse Mathematique, 77 (1999), 129-205.doi: 10.1007/BF02791260.

    [13]

    M. Gelantalis and P. Sternberg, Rotating $2N$-vortex solutions to Gross-Pitaevskii on $S^2$, J. Math. Phys., 53 (2012), 083701.doi: 10.1063/1.4739748.

    [14]

    V. Ginzburg and L. Landau, On the theory of superconductivity, Zh. Eksper. Teoret. Fiz., 20 (1950), 1064-1082.

    [15]

    R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math Anal., 30 (1999), 721-746.doi: 10.1137/S0036141097300581.

    [16]

    R. L. Jerrard and H. M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. Anal., 142 (1998), 99-125.doi: 10.1007/s002050050085.

    [17]

    R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations, 14 (2002), 151-191.doi: 10.1007/s005260100093.

    [18]

    R. L. Jerrard and D. Spirn, Refined Jacobian estimates and Gross-Pitaevsky vortex dynamics, Arch. Rat. Mech. Anal., 190 (2008), 425-475.doi: 10.1007/s00205-008-0167-8.

    [19]

    F.-H. Lin, Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math., 49 (1996), 323-359.doi: 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E.

    [20]

    F.-H Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Comm. Math. Phys., 200 (1999), 249-274.doi: 10.1007/s002200050529.

    [21]

    P. K. Newton, The N-Vortex Problem- Analytical Techniques, Springer-Verlag, New York, 2001.doi: 10.1007/978-1-4684-9290-3.

    [22]

    P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics, 171. Springer-Verlag, New York, 1998.

    [23]

    J. Rubinstein and P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat flow, SIAM J. Math. Anal., 26 (1995), 1452-1466.doi: 10.1137/S0036141093259403.

    [24]

    E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., 152 (1998), 379-403.doi: 10.1006/jfan.1997.3170.

    [25]

    E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Mode, Progress in Nonlinear Differential Equations and their Applications, 70. Birkhäuser Boston, Inc., Boston, MA, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return