May  2014, 34(5): 1905-1931. doi: 10.3934/dcds.2014.34.1905

Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds

1. 

Department of Mathematics, Indiana University, Bloomington, IN 47405, United States, United States

Received  November 2012 Revised  June 2013 Published  October 2013

We consider the dissipative heat flow and conservative Gross-Pitaevskii dynamics associated with the Ginzburg-Landau energy \begin{equation*} E_\varepsilon(u) = \int_{\mathcal M} \frac{|\nabla_g u|^2}{2} + \frac{(1-|u|^2)^2}{4\varepsilon^2} dv_g \end{equation*} posed on a Riemannian $2$-manifold $\mathcal{M}$ endowed with a metric $g$. In the $ε \to 0$ limit, we show the vortices of the solutions to these two problems evolve according to the gradient flow and Hamiltonian point-vortex flow respectively, associated with the renormalized energy on $\mathcal{M}.$ For the heat flow, we then specialize to the case where $\mathcal{M}=S^2$ and study the limiting system of ODE's and establish an annihilation result. Finally, for the Ginzburg-Landau heat flow on $S^2$, we derive some weighted energy identities.
Citation: Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905
References:
[1]

S. Baraket, Critical points of the Ginzburg-Landau system on a Riemannian surface,, Asymptotic Analysisl, 13 (1996), 277.   Google Scholar

[2]

P. Bauman, C. Chen, D. Phillips and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems,, Euro. J. Applied Math., 6 (1995), 115.  doi: 10.1017/S0956792500001728.  Google Scholar

[3]

F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices,, Birkhäuser, (2004).   Google Scholar

[4]

F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics,, Duke Math. J., 130 (2005), 523.  doi: 10.1215/S0012-7094-05-13034-4.  Google Scholar

[5]

F. Bethuel, G. Orlandi and D. Smets, Quantization and motion law for Ginzburg-Landau vortices,, Arch. Ration. Mech. Anal., 183 (2007), 315.  doi: 10.1007/s00205-006-0018-4.  Google Scholar

[6]

F. Bethuel, G. Orlandi and D. Smets, Dynamics of multiple degree Ginzburg-Landau vortices,, Comm. Math. Phys., 272 (2007), 229.  doi: 10.1007/s00220-007-0206-6.  Google Scholar

[7]

N. Burq, P. Gérard and N. Tzvetkov, Stricharz, Inequalities and the nonlinear Schrödinger equation on compact manifolds,, Amer. J. Math., 126 (2004), 569.  doi: 10.1353/ajm.2004.0016.  Google Scholar

[8]

K. Chen, Instability of Ginzburg-Landau Vortices on Manifolds,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 337.  doi: 10.1017/S0308210511000795.  Google Scholar

[9]

A. Contreras, On the first critical field in Ginzburg-Landau theory for thin shells and manifolds,, Arch. Rat. Mech. Anal., 200 (2011), 563.  doi: 10.1007/s00205-010-0352-4.  Google Scholar

[10]

A. Contreras and P. Sternberg, Gamma-convergence and the emergence of vortices for Ginzburg-Landau on thin shells and manifolds,, Calc. Var. Partial Differential Equations, 38 (2010), 243.  doi: 10.1007/s00526-009-0285-7.  Google Scholar

[11]

J. E. Colliander and R. L. Jerrard, Ginzburg-Landau vortices: Weak stability and Schrödinger equation dynamics,, Inter. Math. Res. Notices, 7 (1998), 333.  doi: 10.1155/S1073792898000221.  Google Scholar

[12]

J. E. Colliander and R. L. Jerrard, Ginzburg-Landau vortices: Weak stability and Schrödinger equation dynamics,, Journal d'Analyse Mathematique, 77 (1999), 129.  doi: 10.1007/BF02791260.  Google Scholar

[13]

M. Gelantalis and P. Sternberg, Rotating $2N$-vortex solutions to Gross-Pitaevskii on $S^2$,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4739748.  Google Scholar

[14]

V. Ginzburg and L. Landau, On the theory of superconductivity,, Zh. Eksper. Teoret. Fiz., 20 (1950), 1064.   Google Scholar

[15]

R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals,, SIAM J. Math Anal., 30 (1999), 721.  doi: 10.1137/S0036141097300581.  Google Scholar

[16]

R. L. Jerrard and H. M. Soner, Dynamics of Ginzburg-Landau vortices,, Arch. Rat. Mech. Anal., 142 (1998), 99.  doi: 10.1007/s002050050085.  Google Scholar

[17]

R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy,, Calc. Var. Partial Differential Equations, 14 (2002), 151.  doi: 10.1007/s005260100093.  Google Scholar

[18]

R. L. Jerrard and D. Spirn, Refined Jacobian estimates and Gross-Pitaevsky vortex dynamics,, Arch. Rat. Mech. Anal., 190 (2008), 425.  doi: 10.1007/s00205-008-0167-8.  Google Scholar

[19]

F.-H. Lin, Some dynamical properties of Ginzburg-Landau vortices,, Comm. Pure Appl. Math., 49 (1996), 323.  doi: 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E.  Google Scholar

[20]

F.-H Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation,, Comm. Math. Phys., 200 (1999), 249.  doi: 10.1007/s002200050529.  Google Scholar

[21]

P. K. Newton, The N-Vortex Problem- Analytical Techniques,, Springer-Verlag, (2001).  doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[22]

P. Petersen, Riemannian Geometry,, Graduate Texts in Mathematics, (1998).   Google Scholar

[23]

J. Rubinstein and P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat flow,, SIAM J. Math. Anal., 26 (1995), 1452.  doi: 10.1137/S0036141093259403.  Google Scholar

[24]

E. Sandier, Lower bounds for the energy of unit vector fields and applications,, J. Funct. Anal., 152 (1998), 379.  doi: 10.1006/jfan.1997.3170.  Google Scholar

[25]

E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Mode,, Progress in Nonlinear Differential Equations and their Applications, (2007).   Google Scholar

show all references

References:
[1]

S. Baraket, Critical points of the Ginzburg-Landau system on a Riemannian surface,, Asymptotic Analysisl, 13 (1996), 277.   Google Scholar

[2]

P. Bauman, C. Chen, D. Phillips and P. Sternberg, Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems,, Euro. J. Applied Math., 6 (1995), 115.  doi: 10.1017/S0956792500001728.  Google Scholar

[3]

F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices,, Birkhäuser, (2004).   Google Scholar

[4]

F. Bethuel, G. Orlandi and D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics,, Duke Math. J., 130 (2005), 523.  doi: 10.1215/S0012-7094-05-13034-4.  Google Scholar

[5]

F. Bethuel, G. Orlandi and D. Smets, Quantization and motion law for Ginzburg-Landau vortices,, Arch. Ration. Mech. Anal., 183 (2007), 315.  doi: 10.1007/s00205-006-0018-4.  Google Scholar

[6]

F. Bethuel, G. Orlandi and D. Smets, Dynamics of multiple degree Ginzburg-Landau vortices,, Comm. Math. Phys., 272 (2007), 229.  doi: 10.1007/s00220-007-0206-6.  Google Scholar

[7]

N. Burq, P. Gérard and N. Tzvetkov, Stricharz, Inequalities and the nonlinear Schrödinger equation on compact manifolds,, Amer. J. Math., 126 (2004), 569.  doi: 10.1353/ajm.2004.0016.  Google Scholar

[8]

K. Chen, Instability of Ginzburg-Landau Vortices on Manifolds,, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 143 (2013), 337.  doi: 10.1017/S0308210511000795.  Google Scholar

[9]

A. Contreras, On the first critical field in Ginzburg-Landau theory for thin shells and manifolds,, Arch. Rat. Mech. Anal., 200 (2011), 563.  doi: 10.1007/s00205-010-0352-4.  Google Scholar

[10]

A. Contreras and P. Sternberg, Gamma-convergence and the emergence of vortices for Ginzburg-Landau on thin shells and manifolds,, Calc. Var. Partial Differential Equations, 38 (2010), 243.  doi: 10.1007/s00526-009-0285-7.  Google Scholar

[11]

J. E. Colliander and R. L. Jerrard, Ginzburg-Landau vortices: Weak stability and Schrödinger equation dynamics,, Inter. Math. Res. Notices, 7 (1998), 333.  doi: 10.1155/S1073792898000221.  Google Scholar

[12]

J. E. Colliander and R. L. Jerrard, Ginzburg-Landau vortices: Weak stability and Schrödinger equation dynamics,, Journal d'Analyse Mathematique, 77 (1999), 129.  doi: 10.1007/BF02791260.  Google Scholar

[13]

M. Gelantalis and P. Sternberg, Rotating $2N$-vortex solutions to Gross-Pitaevskii on $S^2$,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4739748.  Google Scholar

[14]

V. Ginzburg and L. Landau, On the theory of superconductivity,, Zh. Eksper. Teoret. Fiz., 20 (1950), 1064.   Google Scholar

[15]

R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals,, SIAM J. Math Anal., 30 (1999), 721.  doi: 10.1137/S0036141097300581.  Google Scholar

[16]

R. L. Jerrard and H. M. Soner, Dynamics of Ginzburg-Landau vortices,, Arch. Rat. Mech. Anal., 142 (1998), 99.  doi: 10.1007/s002050050085.  Google Scholar

[17]

R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy,, Calc. Var. Partial Differential Equations, 14 (2002), 151.  doi: 10.1007/s005260100093.  Google Scholar

[18]

R. L. Jerrard and D. Spirn, Refined Jacobian estimates and Gross-Pitaevsky vortex dynamics,, Arch. Rat. Mech. Anal., 190 (2008), 425.  doi: 10.1007/s00205-008-0167-8.  Google Scholar

[19]

F.-H. Lin, Some dynamical properties of Ginzburg-Landau vortices,, Comm. Pure Appl. Math., 49 (1996), 323.  doi: 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E.  Google Scholar

[20]

F.-H Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation,, Comm. Math. Phys., 200 (1999), 249.  doi: 10.1007/s002200050529.  Google Scholar

[21]

P. K. Newton, The N-Vortex Problem- Analytical Techniques,, Springer-Verlag, (2001).  doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[22]

P. Petersen, Riemannian Geometry,, Graduate Texts in Mathematics, (1998).   Google Scholar

[23]

J. Rubinstein and P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat flow,, SIAM J. Math. Anal., 26 (1995), 1452.  doi: 10.1137/S0036141093259403.  Google Scholar

[24]

E. Sandier, Lower bounds for the energy of unit vector fields and applications,, J. Funct. Anal., 152 (1998), 379.  doi: 10.1006/jfan.1997.3170.  Google Scholar

[25]

E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Mode,, Progress in Nonlinear Differential Equations and their Applications, (2007).   Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[2]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[3]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[4]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[5]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]